PHYLOGENY AND BIOGEOGRAPHY OF AUSTRALIAN GENERA OF CHLOROCYSTINI (INSECTA: HOMOPTERA: TIBICINIDAE)

A.J. De Boer
Instituut voor Systematick en Populatie Biologie (Zoölogisch Museum). University of Amsterdam, PO Box 94766, 1090 GT Amsterdam. The Netherlands

Abstract

Bocr, A.J. de, 1997. Phylogeny and biogeography of Australian genera of Chlorocystini (Insecta: Homoptera: Tibicinidac). Memoirs of Museum of 'I'ctoria 56(1): 91-123.

Six cicada genera belonging to the Chlorocystini are endemic to Australia. These (Chtorocysta Westwood, 1851; Cystopsaltria Goding and Froggatt, 1904; Cystosoma Westwood. 1842; Glaucopsaltria Goding and Froggatt, 1904; Owra Ashton, 1912; and Venustria Goding and Froggatt, 1904) can be divided into three monophyletic groups. The phylogeny and biogeography of these groups is discussed, descriptions arc given of the groups and all species concerned. A key to males is presented for all species of Chlorocystini in Australia.

Introduction

The "Baeturia and related genera complex" was defined as a supposedly monophyletic group for which aedeagal characters are regarded synapomorphic (De Boer, 1990). Recently this complex was identified as the tribe Chlorocystini (sensu stricto) (De Boer, 1995d) comprising about 150 species attributed to 14 genera. Most species occur in New Guinea but the distribution of the tribe includes Maluku and Timor, the Bismarck Archipelago, Solomon Islands, Vanuatu, Samoa, Tonga and parts of northern and eastern Australia.

Of the 13 species in Australia two (Thaumastopsaltria globosa Distant, 1897 and Guineapsaltria flava (Goding and Froggatt, 1904)) also occur in New Guinea. All others are endemic to A ustralia and, apart from Gymnotympana rufa (Ashton, 1914) and Gymnotympana varicolor (Distant, 1907), belong to endemic Australian genera.

The present publication forms part of a phylogenetic and biogeographic study of the Chlorocystini (sensu stricto) and deals with the endemic Australian genera: Chlorocysta Westwood, 1851; Cystopsaltria Goding and Froggatt, 1904; Cystosoma Westwood, 1842; Glaucopsaltria Goding and Froggatt, 1904; Owra Ashton. 1912; and Venustria Goding and Froggatt, 1904. Cystosoma has two species, Chlorocysta three and the others are monotypic.

All nine species were recently discussed (Moulds, 1990) but descriptions and drawings of male genitalia are given for the first timc here. The redescriptions rccount the characters used in a phylogenetic reconstruction of the Chlorocystini as a whole (De Bocr, 1995d). Here, the
relationships of and between Australian genera are discussed separately. A computer analysis of the distribution of shared characters of all 148 species of the Chlorocystini (sensu stricto) has shown that the Australian genera can be subdivided into three groups:

1. Cystopsaltria and Cystosoma. as monophyletic group;
2. Chlorocysta, Glaucopsaltria and Owra, as monophyletic group; and
3. Venustria.

The latter takes a somewhat isolated position, but is presumably closely related to Gymnotympana Stål, 1861 and shares several charaeters with the Australian species (G. rufa and G. varicolor) (De Boer, 1995a; 1995d).

The results of phylogenetic analysis (De Boer, 1995d) are summarised and relationships within and between the Australian groups is treated in more detail. The groups are diagnosed and all species are described. A key to males of all Australian species of the Chlorocystini is presented.

Methods

The material examined for this study is preserved in the following collections: BMNH, Natural History Museum (formerly: British Museum (Natural History)), London; BPBM, Bernice P. Bishop Museum, Honolulu; CSIRO, Commonwealth Scientific and Industrial Research Organisation, Canberra; DE1,, Deutsches Entomologisches Institut, Eberswalde; IZW, Polska Akademia Nauk, Instytut Zoologii, Warszawa; KBIN, Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussels; Moul. personal collection Mr M.S. Moulds,

Sydney: RMNH. Nationaal Natuurhistorisch Muscum (formerly Rijksmuscum van Natuurlijke Historie), Leiden; SEM, Snow Entomological Muscum, Lawrence, Kansas; SMD, Staatliches Museum für Tierkunde, Dresden; SMF, Natur Museum und Forschungs Institut "Senkenberg", Frankfurt am Main; SMN, Staatliches Muscum für Naturkunde, Stuttgart; ZIM, Zoologisches lnstitut und Zoologisches Museum, Hamburg; ZMA, Instituut voor Systematiek en Populatie Biologie (Zoölogisch Museum), Amsterdam; ZMB, Institut für Spezielle Zoologie und Zoologisches Muscum der HumboldtUniversität, Berlin; and ZMH, Zoological Muscum of the University of Helsinki, Helsinki.

Some of the terms used in the descriptions are explained in figs 5 and 13. To examine the male genitalia the pygofer was pulled out after overnight softening, with a sharp needle inserted between the pygofer and the 8th abdominal segment. The aedeagus was pulled out at the same time by inserting the needle between the claspers. Descriptions were made from dried museum material. This drying often affects colour. Bright green becomes yellowish brown, but colour marks like blackish stripes and spots remain intact. Measurements are based on all available specimens. Only some of the most important and the most recent systematic literature concerning the genera and species is cited. For more complete lists of literature is referred to the catalogues of Metcalf (1963) and Duffels and Van der Laan (1985).

Phylogeny

In the following discussion figures in parentheses refer to apomorphies in the cladogram (fig. 1). The Chlorocystini (sensu stricto) form a monophyletic group for which an S-curved aedcagus with winged lateral crests is the supposed apomorphy (1). The phylogenetic relationships between the 148 described species of this tribe were analysed with the aid of the program PAUP (Swofford, 1993) using a data matrix of 154 characters and 409 character states (De Boer, 1995d). The tribe Prasiini was used as the sister group and the genus Muda as outgroup. The result of this analysis showed that on a generic level the support of some of the proposed phylogenetic relationships is very weak.

Two major subdivisions can be made. Chlorocysta, Glaucopsaltria, Owra and Venustria can be grouped with Baeturia, Guineapsaltria, Gymnotympana, Papuapsaltria and Scottotympana based on the following synapomorphies: proximal spine of fore femur erect (3), a smoothly
vaulted pronotum without distinct medial fissure (4) and a distinct hyaline border along the hind margin of tegmen (5). Other genera have a somewhat wrinkled head and pronotum with a fairly distinct medial fissure on the pronotum and a very narrow border along the hind margin of tegmen; these character states also occur in most species of the Prasiini, the presumed sister group of the tribe.

Figure 1. Tentative cladogram of the Chlorocystini. Numbers refer to apomorphies discussed in the text.

Another subdivision can be nrade based on male operculum size. Venustria forms a monophyletic group with Bacturia, Gymnotympana and Scottotympana. These genera share a fairly large operculum as apomorphy (7) in which the medial margin lies medial to the meracanthus. In other genera of Chlorocystini, in Prasiini and in Muda the medial margin of the operculum lies generally lateral to the meracanthus.

Several characters of Venustria are also found in Seottotympana and many species of Gymиotympana and indicate a close relationship with these two genera:

1. tegmina with reddish venation and a broad hyaline border along the hind margin;
2. a long proximal spine on the fore femur, often longer than the distance to middle spine; and
3. a very short meracanthus.

However, Baeturia and Scottotympana presumably form a monophyletic group; claspers which are not fused at the base are a presumed synapomorphy for these two genera (8). V. superba shares a very similarly shaped basal part of the operculum with Gymnotympana rufa and
G. varicolor while the female of V. superba shares a similar thorn-shaped protuberance on the pygofer with G. rıfa. (De Bocr, 1995a; 1995d). The last two eharacters suggest that Venustria should be ineluded in and be synonymised with Gymnotympana but no unambiguous synapomorphy for Venustria and Gymnotympana together has been found. The phylogenetic analysis showed that Vemustria as the sister group of Gymnotympana is the most parsimonious solution (De Boer, 1995d).

The phylogenetic relationships between Chlorocysta, Glancopsaltria and Owra and the group formed by Baeturia, Guineapsaltria, Gymnotympana, Papuapsaltria, Scottotympana and Venustria are not clear, as indieated by the polytomy in fig. 1. Guineapsaltria and Papнарsaltria are possibly sister groups, based on a very small and rounded male operculum in many of their species (6). Chlorocysta, Glancopsaltria and Owra share a very broad vertex with the small ocelli wide apart with most species of Gymnotympana and all but one species of Guineapsaltria; the distanee between the lateral ocelli often exceeds three times the width of the frontal occllus. The fairly short meracanthus of the species of Chlorocysta, Glaucopsaltria and Owra and the vaguc colour pattern found on the head and thorax of two of the Chlorocysta species, might indicate a close rclationship with Gymnotympana, Scottotympana and Venustria. The phylogenetic analysis showed that a reconstruction with Chlorocysta, Glancopsaltria and Owra as sister group of Bacturia, Gymnotympana, Scottotympana and Venustria is slightly more parsimonious than the option with Guineapsaltria and Papuapsaltria as sister group of that group. On a tree with a total length of 906 steps the latter option is only one step longer (De Boer, 1995d).

Cystosoma and Cystopsaltria share a strongly furrowed pronotum and a very narrow border along the hind margin of tcgnien with Acdeastria, Mirabilopsaltria and Thaumastopsaltria, a strongly bent proximal spine on the fore femur with Mirabilopsaltria and Thaumastopsaltria and an angularly protruding postclypeus with Thaumastopsaltria. All these characters arc also widely distributed in Prasiini and are presumed plesiomorphic. Furthermore, Cystosoma and Cystopsaltria have small malc opercula which are regarded plesiomorphic; the opercula of Cystosoma schultzi and Cystopsaltria immaculata. though relatively small, do slightly extend medially of the meraeanthus but the opcrculum of Cystosoma saundersii does not. The two species
of Cystosoma and most species of Thaumastopsaltria and Mirabilopsaltria have a narrow tymbal eavity; the tergite part between the auditory capsule and the 2 nd sternite is very short. This character is presumably apomorphic for Cystosoma, Cystopsaltria, Mirabilopsaltria and Thanmastopsaltria together but then lost in some of the species (2). It is not clear whether or not Aedeastria should also be included in this group; though Aedeastria has a wide tymbal cavity it shares distinct diverging fissures on the vertex as a possible synapomorphy with Mirabilopsaltria and Thaumastopsoltria. The ercet fore femoral spine of Aedeastria, however, suggests a monophyletic origin with the group containing Bacturia, Chlorocysta, Glaucopsaltria, Gymnotympana, Guineapsaltria, Owra, Papmapsaltria, Scottotympana and Venustria (see fig. I questionmarks)

The eoloured tegmina of Cystosoma and Cystopsaltria which are also found in Mirabilopsaltria and Thaumastopsaltria might also indicate a relationship between these genera though this character is also found in some genera of Prasiini.

Biogeography

Biogeographic patterns of Chlorocystini and a similarly distributed group of eicadas, the subtribe Cosmopsaltriaria, were reeently compared and analysed (De Bocr, 1995c). It appears that most of the spccies of these groups are found on terranes derived from a historic oceanic island are, which developed since about 40 million years ago as a result of subduction of the former Tethys Sea under the Pacific tectonic plate (Dc Boer, 1995c). This are is known as the Outer Melanesian Arc (Hamilton 1979; Holloway, 1979, 1984; Duffels, 1986; Rangin et al., 1990a, 1990b; Daly et al., 1991). Duc to the continuous northward movement of Australia and the westward movement of the Pacific this volcanic island arc broke up and fragments collided with the northern craton of Australia where they now form part of Ncw Guinea (Pigram and Davies, 1987). It is supposed that the Outer Melanesian Arc, before breaking up, formed an important route of dispersal for south-east Asian biota invading the Pacific (Duffels 1986, Duffels and De Boer, 1990, De Boer, 1995c).
The distribution of Chlorocystini over the are terranes, the faet that their presumed sister group (the oriental Prasiini as defined by De Jong, 1985) is most speciosc in Sulawesi and that the sister group of these groups combined (the genus Muda) occurs in south-east Asia and the
greater Sunda Islands, suggest that the ancestor of that tribe also used the island are as route of dispersal. In fact. the distribution and phylogeny of these cicadas reflect the geotectonic history in that the main vicariant speciation events in the cladograms correspond with presumed sequences of fragmentation of the island are (De Bocr, 1995c). This means that the ancestor of Chlorocystini originates from Asia and that all its Australian species must have invaded Australia by dispersal presumably through New Guinea (De Boer, 1995c).

Two patterns of distribution of Australian Chlorocystini can be rccognized. It appears that species not belonging to endemic gencra but belonging to genera found in New Guinea as well (Guineapsaltria flara, Gymnotympana rufa, Gymnotympana varicolor and Thaumastopsaltria globosa) are restricted to the northern and castern parts of the Cape York Peninsula; the only exception (T. glohosa) is also recorded from Groote Eylandt, NT (Moulds, 1990). This same pattern is found in several species that do not belong to Chlorocystini: Diceropyga subapicalis (Walker, 1868) (see Duffels, 1977), Lembeja paradoxa (Karsch, 1890) and Lembeja vitticollis (Ashton, 1912) (see De Jong, 1982) belong to non-endemic gencra and are restricted to the Cape York Peninsula (Moulds, 1990).

Venustria, an endemic Australian genus that should possibly be included in Gymnotympana (see discussion above; Dc Boer, 1995a; 1995d). is also restricted to the Cape York Peninsula. The two groups of endemic Australian genera have a much wider distribution, reaching farther southward. These have a strikingly similar distribution in northern and eastern Qld, including the Cape York Peninsula and north-castern NSW.

The distribution patterns of the species of endemic and non-endemic Australian genera and their relative positions in the cladogram suggest different ages. There must have been at least two periods of dispersal from Ncw Guinea to Australia. For the non- Australian genera a dispersal during Pliocene-Pleistocene low sealevel stands has been proposed (De Boer, 1992b; 1995c). The two groups of endemic Australian gencra branch off lower down in the cladogram and must therefore be older. Their ancestors must have reached Australia earlier, possibly following the first collision between Australia and a fragment of the Outer Melanesian Arc, which is dated at about 25 mya (Pigram and Davies, 1987; De Boer, 1995c).

For maps of distribution of the Australian species described here see Moulds (1990) and De Boer (1995c).

Key to males

Tegmen with variable venation, often differing between left and right tegmen of individuals, forming 9 or more apical areas and several subapical areas between apical and ulnar areas

2

- Tegmen venation regular, with 8 or 9 apical areas, but without subapical arcas
2(1) Tegmen hyaline, with fairly broad hyaline border along hind margin and broad costal area. Proximal spine of fore femur erect (fig. 20). Postclypcus not swollen ventrally (figs 4, 45). Pronotum smooth, without distinct medial furrow

3

- Tcgmen opaque or weakly reddish or grcenish tinged, with narrow border along hind margin and narrow costal area. Proximal spine of fore fenlur strongly bent, adjacent to femur (fig. 60). Postclypeus distinctly swollen ventrally (fig. 70). Pronotum with distinct medial furrow 7
3(2) Aedeagus Z-curved in apical part, proximal part straight (cf. fig. 12). Tymbal with 9 or more ridges4
- Aedeagus S-curved (figs 31, 42). Tymbal with 6-8 ridges ... 6

4(3) Hcad and thorax without colour markings. Tymbal with 9-10 ridges. Clasper base forming a low collar around base of anal valves, which is sloping proximally of aedeagus (fig. 6). Aedeagus not incised at apex (figs 11,12)

Chlorocysta vitripennis

-	
	Tymbal with 11-12 ridges. Clasper base forming a high collar
	around base of anal valves, which is erect proximally of aedeagus
	(figs 14, 25). Aedeagus incised at apex (figs 18, 27) 5
5(4)	Distomedial corncr of operculum not reaching medially of meracanthus (fig. 24). Ventral part of postclypeus darkly suffused.
	Tymbal with 12 ridges, 4 of which do not reach ventral tymbal margin Chlorocysta suffisa
	Distomedial part of operculum almost pointed, elongate, reach-
	ing medially of meracanthus (fig. 15). Ventral part of postclypeus
	not darkly suffused. Tymbal with 11 ridges, 4 of which do not
	矿 ventral tymbal margin Chlorocysta fumea
$6(3$	dy length over 28 mm . Abdomen strongly inflated. Scventh
	tergite wedge-shaped in lateral vicw, long dorsally and short at
	ntral margin; pygofer turned to a ventral position. Distal part of
	operculum longer than basal part and reaching beyond apex of
	meracanthus (fig. 44). Wing with 6 apical areas Glaucopsaltria viridis
	Body length under 18 mm . Abdomen weakly inflated. Seventh
	tergite not wedge- shaped in lateral view; pygofer dirccted pos-
	teriad. Distal part of operculum much shorter than basal part and
	not reaching to apex of meracanthus (fig. 33). Wing with 5 apical
	areas . Owra insignis
7(2)	Tegmina rounded at apex, venation not rcticulate. Wings with 6
	apical areas. Pronotum not forming a sharply edged lateral crest.
	Head and pronotum not triangle-shaped; anterior margins of postclypeus and vertex lobes not forming a continuous line with
	lateral margins of pronotum. Cruciform elevation of mesonotum
	broader than long across its centre. First and second sternites not
	adjacent. Clasper straight, with broad domed clasper hollow and
	with laminiform and sharply pointed medial protrusion. Tymbal
	with 6 ridges Thaumastopsaltria globosa
	Tegmina pointed at apex, venation reticulate in distal half. Wings
	with more than 6 apical areas. Pronotum forming a sharply edged
	lateral crest. Head and pronotum triangle-shaped; anterior mar-
	gins of postclypeus and vertex lobes forming an almost continu-
	ous line with lateral crest of pronotum. Cruciform elevation of
	mesonotum narrower than long across its centre. First and second
	sternites adjacent. Clasper hook-shaped, with narrow clasper hol-
	low in downwardly directed apical part and without medial pro-
	trusion. Tymbal with 7 or more ridges 8
8(7)	Veins CuA and M not fused at corner of basal area (fig. 72). First
	apical and ulnar areas reticulate. Pygofer opening narrow, V-
	shaped (fig. 78). Aedeagus with dorsal appendages near its apex
	(figs 85, 86). Tymbal with 10 ridges . Cystopsaltria immaculata
	Veins CuA and M fused at corner of basal area (fig. 81). First
	radial area of tegmen not divided. Venation of apical areas reticu-
	late, ulnar areas normal. Pygofer opening broad, U-shaped (fig
	57). Acdeagus without dorsal appendages (figs 62, 77). Tymbal
	with 7 ridges .

Guineapsattria flava

Chlorocysta, Glaucopsaltria and Owra

Description. The species of Chlorocysta and Glaucopsaltria are large compared to other Chlorocystini, body length $20-33 \mathrm{~mm}$; only Owra is distinctly smaller, under 16 mm . Body reddish brown or greenish, generally uniformly coloured, but abdomen often with reddish segmental hind margins and a row of dark coloured ventrolateral spots. Male abdomen strongly
inflated $1.4-2.3 \times$ as long as head and thorax together, in fcmales $0.9-1.2 \times$. Head broad and short (fig. 3), 2.4-3.0 \times as wide as long and $1.8-$ $2.2 \times$ as wide as distance between eyes. Postclypeus broad and bluntly rounded anteriorly, 2.3$3.3 \times$ as wide as long. Anterior margin of postclypcus continuous with anterior margins of vertex lobes. Sides of postclypeus with about 8-10 distinct furrows, ending in short rows of short parallel ridges, which form a narrow band along
lorum. Postclypeus not swollen ventrally; anterior margin (lateral view) straight or weakly convex (fig. 4). Vertex very broad and smooth; diverging fissures from centre of head to eorners of postclypeus weakly developed. Vertex lobes sometimes with somc weak longitudinal wrinkles. Vertex 1.7-2.4 \times as wide as long; 1.3$1.6 \times$ as wide as postclypeus and $1.6-2.4 \times$ as wide as eye. Oeclli small and far apart. Distance between lateral ocelli $2.4-4.1 \times$ width ol frontal ocellus and 0.8-1.2 \times distance between lateral ocellus and cye. Pronotum 2.3-2.6 \times as wide as long and fairly smooth, without medial furrow. Pronotal collar laterally weakly amplified and slightly curving down at anterior margin of latcral amplifications. Tegmina and wings hyaline, venation reddish or sometimes ochraccous. Tegmen venation variable with 9-15 apical areas and a more or less continuous band of subapical arcas. Costal area hyaline and very distinct, widening towards tegmen apex. A distinct hyaline border along hind margin of tegmen (fairly narrow in Owra). Wings with 5, in Glaucopsaltria 6 , apical areas and a distinctly broader hyalinc border than in tegmina. Legs ochraceous and unmarked. Fore femur (fig. 20) with row of 3 ercet and sharply pointed spines, diminishing in length towards tibia. Tymbal with 6-12 parallel sclerotized ridges. The most proximal ridges often not reaching ventral margin of tymbal. Short intercalary ridges forming a lateral band at half- width across tymbal. Opercula very small. Basal part of operculum slightly vaulted with two rounded elevations and weakly wedgeshaped; longest medially and gradually tapering towards lateral margin. Basal part with distinct crest around its distolateral corner, lateral part of this crest very short and in males often globularly swollen. Distal part of operculum in males angularly oblong and longer than basal part (though extremely short in Owra) and not, or only partly covering tymbal cavity in ventral view; often leaving most of folded membrane exposed. Latcral margin of male operculum straight or weakly convex, slightly directed mesiad and forming a distinct and obtuse angle with crest of basal part and with straight distal margin. The straight medial margin lies laterally of meracanthus. Meracanthus fairly short, but generally reaching beyond operculum. Female operculum shorter than in male and sickleshaped. Male abdomen very delicate and distinctly inflated. First tergite in male medially often more than half as long as 2 nd tergite (but Glaucopsaltria with extremely long 2nd tergite) and not hidden under metanotum. Middorsal
part of second tergite hardly longer than lateral parts, proximal margin of second tergite weakly convex medially. Lateral parts of 2nd tergite wcakly swollen at anterior margins and adjacent to tymbals. Tergite part between auditory capsules and sternite 2 almost straight, forming a distinct ridge along tymbal cavity. Sternites I and 2 not adjacent (fig. 13 arrow). Auditory capsules not swollen, hardly elcvated relative to connecting bar between abdomen and tymbal. Female abdomen shorter and more robust than that of male, with short and broad pygofer (fig. 22). Ovipositor sheaths almost reaching to apex of sharply pointed caudodorsal bcak. Male pygofer short and rounded, with convex distal and ventral margins. Caudodorsal bcak short and creet; not curving over basal part of claspers or anal valves and bluntly rounded, truncate, or rectangular at apex. Lateral lobes of pygofer weakly curved inwards with small, weakly inflated, protuberanecs. Ventral margins of pygofer converging, generally forming a sharp angle at base of pygoler opening. Claspers fairly slender and hook-shaped; sharply curving down at half-length. Apical part of clasper with large, sharply edged, clasper hollow (in Owra without clasper hollow). Claspers weakly diverging towards rounded apices. Basal part of clasper forming a continuous ring-shaped collar around base of anal valves. Acdeagus S-curved (in Chlorocysta more Z-curved in apical part), with very narrow lateral crests along proximal part.

Monophyly of the three genera. In the following discussion figures in parentheses refcr to apomorphics in the cladogram (fig. 2). Chlorocysta, Glaucopsaltria and Owra form a monophyletic group based on the following synapomorphies: 1, a continuous band of subapical areas in tegmen; 2, a wedge shaped basal part of operculum; and 3, small male auditory capsules (De Boer, 1995d).

Figure 2. Cladogram of the species of Chlorocysia. Glaucopsaltria and Owra. Numbers refer to apomorphies discussed in the text.

The tegmen venation tends to be variable and often differs between left and right tegmen within individuals. The number of apical areas
varies from 9-10 in Owra to 11-13 in Chlorocysta and to 13-15 in Glaucopsaltria but is always more than 8 , the number most eommon in related genera and in most cicadas. Furthermore, the tegmina have a more or less continuous band sometimes of a double row of subapical areas between apical and ulnar areas. Similarly high numbers of apical areas in the tegmina are also found in Baeturia inconstans De Boer (De Boer, 1994e), Gym Bocr. 1995a), Mirabilopsaltria (2 speeies, De Bocr. 1996) and all but one speeies of Thallmastopsaltria (De Boer, 1992b). A continuous band of subapical areas is regarded apomorphie for Chlorocysta, Glaucopsaltria and Owra (I in fig. 2). Although in the tegmina of the species of Gymnotympana, Mirabilopsaltria and Thanmastopsaltria noted above some subapieal areas occur, these never form a continuous band. Subapical areas do not occur in Bacturia.

The basal part of the male operculum is slightly wedge-shaped, longest medially and slightly tapering to its lateral margin. The opereulum base is generally oblong in specics of Chlorocystini but in most species of Gymnotympana the operculum base has its greatest length laterally (De Bocr, 1995a). Only in Gymnotympana rufa, G. varicolor and Vemustria superba the basal part of operculum is longest medially but narrows more abruptly at about one third of its width. The weakly wedge-shaped operculum basc is regarded apomorphic for Chlorocysta, Glancopsaltria and Owra (2).

Chlorocysta. Glaucopsaltria and Owra have small and weakly protruding auditory capsules. Although similarly unswollen capsules are present in Thatmastopsaltria (De Boer, 1992b) they presumably represent a parallel devclopment and can be regarded as apomorphic for this group (3).

Phylogenelic relationships. Chlorocysta and Owra share wings with 5 apical areas synapomorphie for these genera (4). Wings with 5 apical areas oecur in several genera of eieadas but only sporadically in other genera of the Chlorocystini.

The three species of Chlorocysta share a somewhat Z-curved aedeagus (a modification of the S-curved aedeagus, an apomorphy of the Chlorocystini) and a high number (9-12) of tymbal ridges $(5,6)$ as apomorphies. Owra insignis shares an incised aedeagal apex with C. fumea and C suffiusa but similarly incised aedeagal apiees occur in several related genera (e.g., Aedeasstia, Guineapsaltria and Papuapsaltria). C. thmea and C. suffusa are supposed to be sister
speeies sharing a large tymbal with $11-12$ ridges (7). Furthermore, these specics share a wide pygofer opening and a distinct colour pattern on head and thorax but the phylogenetic value of these characters is not elear sinee they also occur in several related genera.

Chlorocysta Westwood

Cystosoma (Chlorocysla) Westwood, I85I: 208. Walker, 1852: 1133.

Chlorocysta-Stál, 1863: 575. - Goding and Froggatt, 1904: 566, 596, 658. - Distant, 1906: 153, 159. - Boulard, 1979: 35. - Duffels and Van der Laan, 1985: 249. - Moulds, 1990: 185-186. - De Boer, 1990: 64. - De Boer, 1991: 2-3. - De Boer, 1992a: 164. - De Boer, 1993a: 16-17. - De Boer, 1993b: 142. -De Boer. 1994a: 3. - De Boer, 1995a: 4, 8, 24. - De Boer. 1995b; 6.

Glaucocysta Goding and Froggatt, 1904: 566.
Mardalana Distant, 1905: 213, 215. - Distant, 1906: 154, 159. - Metcalf, 1963: 257. - Duffels and Van der Laan. 1985: 249.

Mardarana [sic] Kato, 1932: 185. - Kato, 1956: 70.

Mardalena [sic] Boulard, 1979: 46.
Type species. Cystosoma vitripennis Westwood, 1851.

Diagnosis. Green body. Basal part of opereulum wedge shaped. Male abdomen strongly inflated. Male auditory capsules weakly inflated. Tegmina with more than eight apical areas and continuous band of subapieal areas. Tymbal with $9-12$ ridges. Aedeagus in lateral view Z-shaped near apex.
Remarks. Chlorocysta, originally described as a subgenus of Cystosoma, is the type genus of Chloroeystini Distant, 1905. The genus contains three species but several undeseribed species have been distinguished (Moulds, pers. comm.). The peculiarly Z-eurved aedcagus is a supposed apomorphy for Chlorocysta.

Chlorocysta vitripennis (Westwood)

Figures 3-13
Cistosoma (Chlorocysta) vitripennis Westwood, 1851: 208.

Chlorocyva vilripennis. - Goding and Froggatt, 1904: 566, 659, pl. xix fig. 6. - Distant, 1906: 159. Burns, 1957: 643. - Metealf, 1963: 256-257. - Duffels and Van der Laan. 1985: 249. - Moulds, 1990: 188-189, pl. 22 figs 2, 2a-b. - De Boer, 1995a: 16, 77. - De Boer. 1995b: 5.

Cicala congria Walker, 1862: 303-304. - Goding and Froggatt. 1904: 611, 657.

Chlorocysa matrula Stål, 1863: 575. - Goding and Froggatt. 1904: 566, 659, 660.

Figures 3-13. Chlorocysta vitripennis Westwood, 1851: 3, male head in dorsal vicw. Mt Tamborine; 4, male postclypeus in lateral view, Mt Tamborine; 5, pygofer in lateral view, Mt Tamborine; 6, claspers and aedeagus, Mt Tamborine; 7, pygofer in oblique vicw, Mt Tamborine; 8 , male caudodorsal bcak in dorsal view, Mt Tamborinc; 9, female operculum. Dorrigo; 10, female caudodorsal beak in dorsal view, Dorrigo; 11, aedeagus in lateral view, Mt Tamborinc; 12, acdeagus in latcral view, ex. coll. v Voixem; 13, malc operculum, Mt Tamborine, arrow indicating gap between sternites 1 and 2 .
$\mathrm{bp}=$ basal part of operculum; $\mathrm{c}=\mathrm{crest}$ around distolatcral corncr of basal part of operculum; $\mathrm{cb}=$ caudodorsal bcak; $\mathrm{dm}=$ distal margin of opcrculum; $\mathrm{di}=$ distal margin of pygofer; do = dorsal margin of pygofer; $\mathrm{dp}=$ distal part of operculum; ho = clasper hollow: la = lateral margin of opcrculum, $\mathrm{m}=$ medial margin of operculum; $\mathrm{me}=$ meracanthus: me = medial corner of opcrculum; pr = protubcrance on lateral lobe of pygofer; ve = ventral margin of pygofer.

Figures 14-24. 14-19, Chlorocysta fumea Ashton, 1914: 14, pygofer in lateral view; 15, operculum; 16, caudodorsal beak in dorsal view: 17, acdeagus in lateral view; 18, aedeagal apex; 19, elaspers. 20-24 Chlorocysta suffiese Distant, 1907: 20, male fore femur in lateral view, Cairns; 21, female opereulum, Cooktown; 22, female genital segment in lateral view. Cooktown; 23, female eaudodorsal beak in dorsal view, Cooktown; 24, male operculum, Julatten.
an almost right angle with slightly longer distal margin. Distal margin straight, but weakly convex near angular distomedial corner. Medial margin straight. Distal part of opereulum elongate at distomedial corner, reaching mesiad beyond apex of meracanthus. Meracanthus short, not reaching distal margin ol operculum.

Abdomen. Strongly inflated, almost uniformly brown coloured, but with darkened segmental hind margins and a lateral row of darkened spots.

Genitalia. Pygofer in lateral view (fig. 14) short and globularly swollen. Dorsal margin weakly concave, convexly bending into ereet caudodorsal beak. Distal margin slightly convex between beak and lateral protuberance. Ventral margin angularly convex. Ventral margins converge to a bluntly rounded angle at base of pygofer opening. Caudodorsal beak in dorsal view (fig. 16) with subapical swelling and pointed apex. Lateral lobe of pygofer with snall weakly swollen lateral protuberance. Claspers (fig. 19) fused at base to a continuous and broad collar around base of anal valves. Dorsal margin of clasper ending in right angle on surface of this collar and not forming a lateral crest on lateral surface of clasper base. Collar ereet, not domed, between elaspers. Distal corner of clasper bending mesiad around aedeagus, supporting aedeagus in upright position. Claspers sharply curving down and strongly diverging towards apices. Apieal part of elasper with sharply edged hollow at its inwardly directed side. Aedeagus (fig. 17) slender and apically rounded in lateral view, strongly Z-curved in apical third, basal twothirds almost straight. Aedcagus with very slender lateral erests and without dorsal swellings. Aedeagal apex with dorsoventral incision; aedeagus ending in two small and almost pointed lateral lobes (fig. 18).

Mcasurements: Body length: 29.8 mm ; tegmen length: 31.7 mm ; head length: 2.3 mm ; pronotum length: 2.8 mm ; mesonotum length: 6.2 mm ; head width: 6.5 mm ; width of pronotal collar: 7.2 mm .
Distribution. Endemic to the Cape York Peninsula. Qld. Moulds (1990) recorded the speeies only known from along the old Leo Creek track at the southern end of the Mellwraith Range, at an altitude of around 300 m .
Remarks. C. firmea is the largest species of this genus and is easily recognized by its distomedially elongated male operculum. C. firmea is elosely related to C. suffisa, deseribed next,
sharing a similar colour pattern and incised aedeagal apex. Only one male was available for study.

Chlorocysta suffusa (Distant)

Figures 20-29
Mardalana suffisa Distant, 1907: 418. - Burns. 1957: 644. - Metcalf. 1963: 258. - Duffels and Van der Laan. 1985: 249.

Chlorocysla suffisa. - Moulds, 1990: 186-187, pl. 22 figs 7, 7a.
Material examined. Australia. S. Qld, Nauklér, coll. Dodd, ơ, ZMH. Cairns 9 km W, ii-iv. 1985, ó, ZMA. Cairns, A.P. Dodd ơ Det. Chlorocysta vitripenmis $\mathrm{G}+\mathrm{F}$. BPBM. Cairns, 1920, J.F. Hlingworth, of, Det. Chlorocysta vitripennis G+F, BPBM. Clohesi River, S.F.SW of Kuranda, 18.i.1984, M.S. and B.J. Moulds, 0° C. swf fiesa det. M.S. Moulds, o C. suffusa det. M.S. Moulds. Moul. Gordonvale, J.F. Illingworth, ó, o, BPBM. Julatten, $10 \times x i .1979$, M.S. and B.J. Moulds, $¢$ C. suffusa det. M.S. Moulds, Moul, Same data but 20.xi.1979, ó C. suffiusa det. M.S. Moulds, Moul. 15.i.1981, ס7 Mardalana suffitua det. M.S. Moulds, ZMA. 17.i.1981. o' $^{\circ}$ C suffitsa det. M.S. Moulds, Moul. 24.i.1981, o C: suffisa det. M.S. Moulds, Moul. 13.iii.1982, ó C. suffusa det. M.S. Moulds, Moul. Kamerunga, nr Cairns, 14.i. 1977. M.S. and B..I. Moulds, σ^{\prime} C. suffirsa det. M.S. Moulds, Moul. Kuranda, 200m, 12.iii.1956, J.L. Gressitt, σ, BPBM. Kuranda, 14.ii.1988, J. Hasenpusch, o C. suffirsa det. M.S. Moulds, Moul. Quarantine Bay, nr Cooktown, 17.ii.1982, M.S. and B.J. Moulds, ς C. suffusa det. M.S. Moulds. Moul. Tully Falls, S of Ravenshoc, II.i.1977, M.S. and B.J. Moulds, o C. sufliusa det. M.S. Moulds. Moul. Upper Smithfield, nr Cairns, 7.i.1984, M.S. and B.J. Moulds, ơ C. suffusa det. M.S. Moulds, Moul. Windsor Tableland, NW of Mossmann, 10.i.1984, M.S. and B.J. Moulds, of C. sufficisa det. M.S. Moulds, Moul. Woobadda R., S of Bloomsficld, 13.i.I 984, M.S. and B.J. Moulds, ơ C. suffirsu det. M.S. Moulds, o C. suffiua det. M.S. Moulds, Moul.

Description. Body ochraceous to brown, probably green when alive and covered with short brown hairs (for photographs see Moulds, 1990: pl. 22 figs 7, 7a). Head and thorax with indistinct pattern of brown stripes. Females with conspicuously striped abdomen. Abdomen in males 1.4$1.6 \times$ head and thorax together, in females $1.0-$ 1.2 x . Tegmina of males $1.1-1.2 \mathrm{x}$ body length, of females 1.3-1.4 x.

Head. With similar colour pattern as in C. fimmea, though strongly varying in intensity. Vertex light brown, darker brown around lateral ocelli and sometimes around frontal ocellus and with dark brown spots bordering lateral corners of postclypeus. Vertex lobe with 2 dark brown spots between lateral ocellus and eye and a dark spot bordering proximomedial corner of eye.

Figures 25-37. 25-29, Chlorocysta suffusa Distant, 1907: 25, pygofer in lateral view, Julatten; 26, pygofer in oblique view, Julatten; 27, claspers and aedeagus, Julatten; 28, male caudodorsal beak in dorsal view, Julatten; 29, aedeagus in lateral view, Julatten. 30-37 Owra insignis Ashton, 1912:30, pygofer in lateral view; 31, aedeagus in lateral view; 32, male caudodorsal beak in dorsal view; 33, male operculum; 34 , female caudodorsal beak in dorsal view; 35 , pygofer in oblique view; 36, clasper, 37, female operculum.

Vertex lobes slightly darkencd on antcrior parts. Postclypeus in dorsal view dark brown at lateral corners and along anterior margin. Ventral part of postclypeus with large dark medial spot. Lateral surface of postclypcus with $9-10$ irregular rows of short parallel ridges continuing into ten parallel strcaks running towards central fissure.

Thorax. Pronotum ochraceous brown, with a broad lighter ochraceous coloured medial band that is not, or only slightly, dilating towards distal pronotal margin. Proximal end of this band marked by a pair of small dark brown paramedian spots at pronotal collar. Pronotum light brown along oblique fissures and towards medial band. Mesonotum greyish brown, only slightly darkened in paramedian spots at pronotal margin and in vague reticulate pattern of angular brown spots, forming lateral streaks from pronotal margin to corners of cruciform elevation. Cruciform elevation greenish ochraceous, with brown medial band. 2 black spots in front of elevation.

Tegmina and wings: Hyaline. Tegmen venation variable, differing even between left and right tegmen of individuals. Tegmina with 1213 apical areas and a, at some places double, band of $6-8$ subapical areas. Wings with 5 apical areas.

Tymbals. 12 dark brown parallel sclerotized ridges; 8 ridges spanning the tymbal from dorsal to ventral margin, the 4 most proximal ridges do not reach ventral margin and successively shortening, with most proximal ridge shortest. 12 short and lighter coloured intercalary ridges seem to form a lateral band across tymbal.
Operculum. Male operculum (fig. 24) closely resembling that of C. fumea in size, but with a more rectangular shaped distal part, not elongated at distomedial corner. Basal part of operculum slighly vaulted and wedge-shaped; longest medially and tapering towards its lateral margin. Basal part forming a distinct, though very short crest around rectangular distolateral corner. Distal part of operculum almost rectangular, adjacent to body and not covering tymbal cavity in ventral view, though, as in C. fumea, covering most of folded membrane. The straight and almost parallel lateral and medial margins both making an almost right angle with straight distal margin. Meracanthus short, not reaching to distal margin of operculum. Female operculum (fig. 21) short, sickle-shaped and erect.

Abdomen. Male abdomen strongly inflated, almost uniformly brown to green coloured, seg-
mental hind margins often darker coloured. Ventrolateral row of slightly darkened spots on segments 3-7. Female abdomen with pattern of broad longitudinal lateral streaks similar as in Gymnotympana strepitans (De Boer, 1995a) and a distinct dark brown ventromedial band. Fcmale caudodorsal beak reaching to apex of ovipositor sheaths (fig. 22) and triangular in dorsal view, somewhat swollen to its base and sharply pointed at apex (fig. 23).

Malc genitalia. Pygofer in lateral view (fig. 25) short and globularly rounded. Dorsal margin slightly concave, continuous with straight and slender caudodorsal beak. Distal margin slightly convex between beak and lateral protuberance. Ventral margin straight, but forming a rounded corner under lateral protuberance. Ventral margins converging and forming a sharp angle at base of pygofer opening (fig. 26). Caudodorsal beak in dorsal view (fig. 28) short, triangular and pointed or narrowly rounded at apex. Lateral lobe of pygofer curving inwards, forming a triangularly swollen protuberance, which does not extend beyond distal margin of pygofer. Claspers (fig. 27) very similar to C. fumea. Clasper base fused to a high and continuous collar around base of anal valves. Dorsal margin of clasper ending in right angle on this collar and not forming a crest on lateral surface of clasper base. Clasper base forming collar around base of anal valves, which abruptly, but slightly, curves inwards between claspers. Claspers forming diverging ridges from dorsal margins to base of anal valves. Distal corner of clasper bending mesiad around aedeagus, supporting aedeagus in upright position. Claspers curving down and strongly diverging towards apices. Apical part of clasper with sharply edged hollow at its inwardly directed side. Aedeagus apically rounded in lateral view (fig. 29), slender and Z-curved in apical third. Basal two-thirds of aedeagus almost straight, with very slender lateral crests and slightly swollen dorsally, at distal ends of lateral crests. Aedeagal apex with dorsoventral incision; aedeagus ending in two small, rounded, lateral lobes (fig. 27).

Measurements (mean \pm sd): Body length ơ: $24.2-27.9 \mathrm{~mm}(26.2 \mathrm{~mm} \pm 1.1)$, 甲: $20.0-21.5$ $\mathrm{mm}(20.5 \mathrm{~mm} \pm 0.6)$; tegmen length of: 28.2$31.2 \mathrm{~mm}(30.0 \mathrm{~mm} \pm 1.1)$, \%: $26.3-28.3 \mathrm{~mm}$ ($27.5 \mathrm{~mm} \pm 0.7$); head length $\sigma^{\circ}: 2.1-2.5 \mathrm{~mm}(2.3$ mm), ¢: $1.9-2.5 \mathrm{~mm}(2.2 \mathrm{~mm})$; pronotum length $\sigma^{\circ}: 2.5-2.8 \mathrm{~mm}(2.7 \mathrm{~mm})$, $9: 2.7-2.8 \mathrm{~mm}$; mesonotum length $\sigma^{2}: 5.4-6.4 \mathrm{~mm}(5.8 \mathrm{~mm}$), o: $4.9-5.6$ $\mathrm{mm}(5.3 \mathrm{~mm})$; head width $\delta: 6.0-6.7 \mathrm{~mm}(6.4$

collar ơ: 6.7-7.5 $\mathrm{mm}(7.0 \mathrm{~mm})$, o: $6.6-7.3 \mathrm{~mm}$ (6.9 mm).
Distribution. Along the eastern coast of the Cape York Peninsula, QId. Moulds (1990) recorded the species from Iron Range, the Mellwraith Range near Coen and Cooktown south to the Paluma Range.
Remarks. C. suffisa closely resembles C. funnea in tymbal shape and colour pattern but can be easily separated from that species by a dark brown suffused spot on the ventral side of the postelypeus. Males of C. suffinsa are easily separated from C. fitmea by their rectangular operculum.

Onra Ashton

Owru Ashton, 1912: 224. - Metcalf, 1963: 252. Duffels and Van der Laan. 1985: 248. - Moulds, 1990: 184-185. - De Boer, 1992b: 18, 19, 20. - De Boer. 1993a: 16-17. - De Boer, 1993b: 142. - De Boer. 1995a: 8. - De Boer, 1995b: 6.
Type species. Owra insigulis Ashton, 1912 (monotypic).

Owra insignis Ashton

Figures 30-37
Ow'a insigni, Ashton. 1912:224, pl. Ll figs 6-6d. Burns. 1957, 642. - Metcalf. 1963: 252. - Duffels and Van der Laan, 1985: 248. - Moulds, 1990: 185. pl. 22 figs 6, 6il,
1/uterial examined. Australia. Lake Barine. 530 m . 31.i-1.ii.1964. J. Sedlacek. \&. BPBM: Cairns. A.P. Dodd, ó Det. Chtorocysta macrula Stal, B1P3M.
Descripion. Body reddish brown but according to Moulds (1990) olive green when alive (for photographs see Moulds, 1990: pl. 22 figs 6, 6a). Abdomen in male $1.5 x$ head and thorax together, in female 1.0 x . Tegmina of male 1.1 x body length, of female 1.4 x .

Tegmina and wings. Hyaline, venation redbrown and costa bright red. Tegmina with 10 (according to Moulds, 1990, sometimes 9) apical areas and a regular band of 3 or 4 subapical areas. Costal area very broad. Tegmen with very narrow hyaline border along hind margin. Wing with 5 apical areas and broad liyaline border along hind margin.

Tymbals. 5 parallel selerotized ridges spanning the tymbal from dorsal to ventral margin and a 6 th , most proximal ridge, almost reaching ventral margin. 5 distinct intercalary ridges seem to form a lateral band across tymbal.

Opercula. Male operculum (fig. 33) extremely small, not covering tymbal eavity in ventral view and leaving folded membrane completely
exposed. Basal part of operculum about $4 \times$ as long as distal part, slightly vaulted and with distinet crest around rectangular distolateral corner. Basal part wedge-shaped; medially distinetly longer than laterally. Distal part of male operculum very short, sickle-shaped and erect. hardly more than a continuation of the crest around distolateral corner of basal part. Meracanthus reaching well beyond operculum. Fcmale operculum (fig. 37) very similar to that of male, with extremely short and sickle-shaped distal part.

Abdomen. Male abdomen slender and weakly inflated, almost unicoloured ochraccous, but segmental hind margins orange-brown. Second tergite (fig. 33) weakly curved along tymbal cavity. Female abdomen light brown with reddish segmental hind margins and ventrolateral row of brown spots on segments 3-8. Ovipositor sheaths not reaching to apex of caudodorsal beak. Female caudodorsal beak in dorsal view (fig. 34) broad and bluntly rounded at apex.

Male genitalia. Pygofer in lateral view as in fig. 30. Dorsal margin of pygofer straight, strongly concave to base and angularly bending into straight, slender and erect caudodorsal beak. Distal margin slightly convex, angularly bending into margin of beak. Lateral lobe of pygofer strongly curving inwards towards end of distal margin and forming an angularly rounded and swollen lateral protrusion. Ventral margin of pygofer strongly convex near this protrusion, but almost straight towards base of pygofer. Ventral margins converging to short and straight basal margin at base of pygofer opening (fig. 35). Caudodorsal beak in dorsal view (fig. 32) short and bread, truncate at apex. Claspers very different from those of related species, missing a clasper hollow. Clasper (fig. 36) broad, globularly swollen near base, strongly curved down to very slender and elongate, almost laminiform apical part. Claspers strongly diverging towards their truncate apices. Clasper base forming a low collar around base of anal valves. Acdeagus (fig. 31) strongly upcurved at half-length and with slender lateral crests. Aedeagal apex incised, as in C. fiumea and C. su/fusa, but ending in two more sharply pointed lateral lobes (fig. 35).

Measurements. Body length $\sigma: 15.1 \mathrm{~mm}, ~$, 13.3 mm ; tegmen length ơ: 17.0 mm , o: 19.0 mm ; head length $\sigma: 1.6 \mathrm{~mm}$, ㅇ: : 1.7 mm ; pronotum length ơ: 1.6 mm, ¢ : 1.8 mm ; mesonotum length o': $3.0 \mathrm{~mm} . \rho: 3.3 \mathrm{~mm}$; head width of: 4.1 mm , ¢: 4.6 mm ; width of pronotal collar $\sigma^{\circ}: 4.0 \mathrm{~mm}$, 4.6 mm .

Distribution. Only known from the south-eastern corner of the Cape York Peninsula, northeastern Qld. Moulds (1990) recorded the speeies from Thornton Peak range north of Daintree to Mission Beach and widespread on the Atherton Tableland.
Remarks. Owra insignis is a very small ochraccous brown species, at first sight closely resembling Ginineapsaltria flava and Gymnotympana rufa. Owra, however, is elosely related to Chlorocysta and Glaucopsaltria, sharing the presumed synapomorphic tegmen venation. Owra shares the 5 apical areas in the wing with Chlorocysta. Only one male and one female have been examined.

Glaucopsaltria Goding and Froggatt

Glaucopsaltria Goding and Froggatt. 1904: 657. 659. - Moulds, 1990: 189 - De Boer, 1992b: 18, 19. 20.-De Bocr, 1993a: 16-17. - De Boer, 1993b: 142. - De Boer, 1995a: 8. - De Boer, 1995b: 6.

Glaucopsalria in synonymy of Chlorocysta. - Distant. 1906: 159. - Metealf, 1963: 255-256, 473.

Type species. Glancopsaltria viridis Goding and Froggatt (monotypic).

Glaucopsaltria viridis Goding and Froggatt

Figures 38-44
Glancopsaltria viridis Goding and Froggatt, 1904: 566, 658. - Kirkaldy. 1907:308 (6). - Moulds, 1990: 190, pl. 22 fig 3. - De Boer, 1995a: 16.
Chlorocysta viridis. - Distant, 1906: 159. - Froggatt. 1907: 352. - Burns, 1957.643. - Metcalf, 1963: 256. - Duffels and Van der Laan, 1985: 249.

Material examined. Australia. Qld. 24.ii.1946. ó, SEM. Brisbanc. 1973, J.B. Vogel, ${ }^{\alpha}$, ZMA. Qld, J.A. Grant. BM- CSIRO Expedition, BM 1973-346. ó, BMNH. Rockhampion. Museum Godefroy No 4836. σ det. C. viridis. ZIM.
Description. Body olive green or yellow-green (for photograph see Moulds, 1990: pl. 22 fig 3). Tegmina slightly shorter than body. Abdomen $1.9-2.2 \times$ head and thorax.
Tegmina and wings. Hyaline. Tegmen venation variable and differing even between left and right tegmen of individuals. Tegmina with 13-15 apical areas and a continuous band. at some places concisting of a double row, of 7-10 subapieal areas. Costal area very distinct, broadening towards tegmen apex. Tegmen with distinct hyaline border along hind margin, though narrower than in wing. Wing with 6 apical areas.

Legs. Fore femur with row of 3 erect spines (fig. 43).

Tymbals. 6 transverse sclerotized ridges spanning the tymbal from dorsal to ventral margin and a 7 th , most proximal, ridge almost reaching ventral margin. 7 short intercalary ridges seem to form a lateral band across tymbal.

Opereulum (fig. 44). Basal part of operculum slighly vaulted, wedge-shaped; longest medially and tapering towards lateral margin. Basal part forming an irregularly protruding erest around distolateral corner. Distal part of operculum longer than basal part and reaching beyond apex of meraeanthus. Distal part only partly covering tymbal cavity in ventral view, though covering most of folded membrane. Lateral margin making an almost right angle with basal part of opereulum and initially almost straihgt, but angularly bending mesiad where operculum eurves towards body. Distal margin straight, making a sharp angle with straight medial margin. Distolateral corner broadly rounded. Operculum strongly curved-up along proximal part of its lateral margin (especially in Brisbane speeimen), forming a small lobe (fig. 44 arrow).

Abdomen. Strongly inflated, uniformly green or discoloured yellow, with traces of green. Second tergite medially about $3 \times$ Ist tergite and laterally gradually tapering to auditory capsules. Seventh tergite wedge-shaped in lateral view; very long and convex dorsally (lateral view), short ventrally.

Genitalia. Pygofer in lateral view as in fig. 39. Dorsal margin weakly concave, continuous with erect caudodorsal bcak. Distal margin weakly convex between beak and lateral protuberance. Ventral margin straight, forming an almost rectangular corner just under lateral protuberance, concavely bent near base of pygofer opening. Ventral margins converge and form a sharp angle at base of pygofer opening (fig. 38). Caudodorsal beak in dorsal view (fig. 41) broad and triangular, almost rectangular at apex. Lateral lobe of pygofer bending inwards towards distal margin, forming an angularly rounded and laterally flattened protuberance. Clasper as in Chlorocysta, but with longer and more slender apical part (fig. 40). Apieal part of clasper strongly bent down towards smoothly rounded apex and with a sharply edged hollow at inwardly dirccted side. Dorsodistal corner of clasper bending mesiad around aedeagus. supporting aedeagus in upright position. Claspers almost parallel, only slightly diverging towards apices and fused at base to a fairly low and continuous collar around base of anal valves. Medial part of eollar curving inwards, slightly dome-shaped proximally of aedeagus, between

Figurcs 38-46. 38-44, Glaucopsaltria viridis Goding and Froggatt, 1904: 38, pygofer in oblique view, Australia; 39 , pygofer in latcral view, Brisbane; 40, claspers, Australia; 41, caudodorsal beak in dorsal view, Australia; 42, aedeagus in lateral view, Australia; 43, male fore femur in lateral view, Australia; 44, operculum, Brisbane, arrow indicating upcurving lateral lobe. 45-46 Venustria superba Goding and Froggatt, 1904: 45, male postclypeus in lateral view, Kuranda; 46, male head in dorsal view, Kuranda.
dorsal crests of claspers. Dorsal margin of clasper forming a sharply edged crest, continuing on lateral surface of clasper base. Aedeagus (fig. 42) weakly S-curved, with very short and narrow lateral crests along proximal half. Aedeagal pore oval.

Measurements. (mean): Body length: 29.8$33.8 \mathrm{~mm}(32.1 \mathrm{~mm}$); tegmen length: 29.5-31.3 $\mathrm{mm}(30.0 \mathrm{~mm})$; head length: $2.1-2.4 \mathrm{~mm}(2.3$ mm); pronotum length: $2.7-2.9 \mathrm{~mm}(2.8 \mathrm{~mm})$; mesonotum length: $5.1-6.0 \mathrm{~mm}(5.5 \mathrm{~mm})$; head width: $6.4-6.5 \mathrm{~mm}$; width of pronotal collar: $6.8-7.0 \mathrm{~mm}(6.9 \mathrm{~mm})$.

Distribution. Along the eastern coast of Qld and in north-eastern NSW. Moulds (1990) recorded the species from Daintree River punt crossing and Cairns in northern Qld, from Mackay, Carlisle Island, Middle Percy Island and Eungella in central Qld and from the Kolan River north of Gin Gin to Dorrigo.
Remarks. Glaucopsaltria viridis is larger than the Chlorocysta species with a strongly inflated abdomen. Glaucopsaltria is easily separated from Chlorocysta and Owra, since it has six (instead of five) apical areas in the wings. Males of G. viridis can be recognized by the shape of the 7th tergite which is very long middorsally but short ventrally so that the pygofer is curved to a ventral position. Females have not been examined. The local name of this species is Bottle Cicada (Moulds, 1990).

Venustria Goding and Froggat

Venustria Goding and Froggatt, 1904: 565, 596. Distant, 1906: 128, 129. - Metealf, 1963: 203. Duffels and Van der Laan, 1985: 233. - Moulds, 1990: 32, 180. - De Boer, 1990: 64. - De Boer, 1991: 2-3. - De Boer, 1992a: 164. - De Boer, 1992b: 19. - De Boer, 1993a: 16-17. - De Boer, 1993b: 142. De Boer, 1994a: 3. - De Boer, 1994b: 130. - De Boer, 1995a: 1, 3, 4, 8, 11. - De Boer, 1995b: 5.

Venustra [sic]. - Kato, 1932: 181.
Type species. Venustria superba Goding and Froggatt, 1904 (monotypic).
Remarks. Distant (1906) included Venustria in his division Taphuriaria (now the tribe Taphurini, which has as principal characters: "Eyes projecting beyond anterior margin of pronotum; pronotum subquadrate, not distinctly narrowed anteriorly; abdomen about as long as space between apex of head and base of cruciform elevation; a more or less distinct posterior metasternal process visible in males between or at the base of the opercula" (Distant, 1906).

Recently Moulds (1990) transferred the genus to Chlorocystini since several characters (e.g., forewing vein Sc scparated from costa; apical cells mostly longer than ulnar cells; and an inflated male abdomen) are "associated with that tribe".

Venustria has a wcakly S-curved aedeagus, with very narrow lateral crests and should therefore be placed in Chlorocystini. The width of the head and shape of the pronotum of Venustria are very similar to those of Chlorocysta and its metastcrnum, though more protruding than in Chlorocysta, does not differ greatly from that of other genera of the tribe. Males of Venustria, however, have a very short and rather solid looking abdomen, often shorter than head and thorax together. The eyes are large and angular with inwardly directed proxomedial corners and the tegmina are relatively long so that in general aspect Venustria looks fairly different from all other species of the tribe.

Venustria superba Goding and Froggatt

Figures 45-55
Venustria superba Goding and Froggatt, 1904: 565, 597. 603, pl. xix figs 7, 7a. - Distant, 1906: 628. Burns, 1957: 634. - Metcalf, 1963: 203-204. — Duffels and Van der Laan, 1985: 233. - Moulds, 1990: 180-181, pl. 16, fig. 11. - De Boer, 1995a: 3, 4, 9, 13, 15, 74, 77.

Material. Australia. Australiën, 1888, v Müller, q, SMN. Etty Bay nr Innisfail, 23.ii.1982, M.S. and B.J. Moulds, ơ Venustria superba det. M.S. Moulds, ZMA. Cairns, J.F. Illingworth, 1920, 50°, o det. Venustria superba, BPBM. Kuranda I ml. E, II.iii.1964, I.F.B. Common and M.S. Upton, ơ, CSIRO.
Description. Body light brown (for photograph see Moulds, 1990: pl. 16, fig. 11). Females about as long as males, but with more robust head and thorax and longer tegmina. Abdomen of males relatively short, $0.8-1.1 \times$ head and thorax together, of females $0.9-1.0 \times$. Tegmina fairly long in males and females, being 1.3-1.5 \times body length.

Head (fig. 46): Ochraceous brown, darkened towards anterior margins of vertex lobes, with row of 3 dark spots on vertex lobe between lateral ocellus and eye. Head slightly broader than anterior part of pronotum, $2.4-3.1 \times$ as broad as long and 2.1-2.4 \times as broad as distance between eyes. Head distinctly shorter than distance between eyes. Postclypcus $2.6-3.2 \times$ as wide as long and smoothly rounded anteriorly, its anterior margin convex and almost continuous with anterior margins of vertex lobes.

Figures 47-55. I'emuria sututa Goding and Froggatt, 1904: 47, female genital segment, Cairns; 48, female operculum, Cairns; 49, female caudodorsal beak in dorsal view, Cairns; 50, pygofer in lateral view, Kuranda; 51, pygofer in oblique view, Kuranda; 52, aedeagus in lateral view, Etty Bay; 53, male caudodorsal beak in dorsal view. Kuranda: 54 , male fore femur in lateral view, Kuranda; 55 , male opereulum, Etty Bay.

Postclypeus (fig. 45) weakly swollen ventrally. anterior margin (lateral view) weakly convex. Lateral sides of postelypeus with about 12 furrows and 5-6 very short and irregular rows of short parallel ridges on weakly inflated erest along the lorum. Vertex smooth with weak medial furrow and without diverging furrows. Vertex in males 1.8-2.2 x , in female 2.3-2.4 \times as wide as long and, in both sexes, 1.4-1.8 \times as wide as width of eye. Eyes large and angular; medial margins of eyes strongly converging: shortest distance between eyes at their proxomedial corners. Ocelli small and wide apart. Distance between lateral ocelli $0.8-1.0 \times$ distance between lateral ocellus and eye and $2.8-$ $3.4 \times$ width of frontal ocellus.

Thorax. Pronotum ochraccous, with dark streaks in and along oblique fissures and a narrow light ochraceous or greenish coloured medial band bordered by vagucly darkened streaks. Pronotum without medial fissure, 2.3$2.7 \times$ as wide as long and, across the collar, 1.1$1.2 \times$ as wide as head. Amplified lateral corners of pronotal collar larger than in Chlorocysta. Mesonotum ochraceous brown, with reticulate pattern of oehraccous stripes and brown speeks, forming a pair of paramedian semicircular spots at pronotal margin and a pair of converging lateral bands from pronotal margin to corners of eruciform elevation. 2 dark spots in front of cruciform elevation.

Legs. Fore femur (fig. 54) with row of 3 erect spines, diminishing in length towards tibia. Most proximal spine very long, longer than distance to middle spine.

Tegmina and wings. Hyaline, but slightly bronzed in apical areas. Venation reddish brown. Tegmen with 9 apical areas and distinct costal area. Veins CuA and M adjacent, but not fused near basal area. Wing with 6 apical areas.

Tymbals. 4 transverse selerotized ridges spanning the tymbal from dorsal to ventral margin, a 5th ridge almost reaching ventral margin and a 6 th, most proximal, ridge spanning about threequarters of tymbal width. 5 short intercalary ridges seem to form a lateral band across tymbal.

Opercula. Male operculum (fig. 55) covering greater part of tymbal cavity in ventral view and extending medially of meracanthus. Basal part of operculum medially distinctly longer than laterally, abruptly broadening at about third of its width and strongly vaulted. Distal part angularly oblong. Lateral margin long and straight, angularly bent into weakly convex distal margin. Dis-
tomedial and medial margins straight, distomedial corner broadly rounded, medial corner more narrowly rounded, almost rectangular. Meracanthus very short, hardly reaching beyond basal part of operculum. Opercula widely separated medially. Female operculum (fig. 48) very small. Basal part as in males, medially distinetly longer than laterally. Distal part shorter than basal part, its straight lateral margin forming a broadly rounded angle with weakly convex distal margin.

Abdomen. Light brown, silvery pilose and with dark brown midventral band. Males with darkened 8th and sometimes 7th, tergite and ventrolateral row of slightly darkened spots on segments $3-7$. Male abdomen more solid in aspect than in other species of Chlorocystini, hardly swollen and almost without fold between tergites and sternites; nearly circular in cross section. First tergite very short and partly hidden under metanotum. Anterior margin of 2 nd tergite concave medially. Lateral parts of 2nd tergite swollen anteriorly and almost adjacent to tymbal, leaving only a narrow gap between tymbal and 2nd tergite. Auditory capsules globularly swollen and distinctly elevated relative to connecting bar between abdomen and tymbal. Tergite part between auditory capsule and sternite 2 almost straight, with distinct crest along tymbal cavity. First sternite globularly swollen between opercula. Female abdomen about as large as that of male, but more strongly tapering towards apex. Female pygofer (fig. 47) long and slender with distinct thorn-shaped protuberance at ventral margin. Ovipositor shcaths reaching to apex of caudodorsal bcak. Female caudodorsal beak in dorsal view (fig. 49) triangular and sharply pointed at apex.

Male genitalia. Pygofer in lateral view as in fig. 50. Dorsal margin almost straight. but concave to base and weakly convexly bent into stout and slightly posteriorly curved caudodorsal beak. Distal margin angularly convex, concavely bent into caudodorsal bcak and ending in almost right angle on broad and angular lateral protrusion. Ventral margin strongly concave. Lateral lobe of pygofer with very small angularly swollen latcral protuberance, distinctly reaching beyond distal margin of pygofer. Pygofer opening broad (fig. 51); ventral margins ending wide apart at straight basal margin. Caudodorsal beak in dorsal view (fig. 53) triangular and sharply pointed at apex. Clasper (cf. fig. 51) very short and stout, with rounded lobate and downwardly directed apical part and broad, sharply edged inwardly directed, clasper hollow. Dorsal
margin of clasper sharply curving upwards proximally, merging with broad ring-shaped clasper base. Basal part ol' elasper very broad in lateral view, distinetly swollen around base of anal valves, espeeially mid-between claspers, possibly representing the remnants of a medial uncus lobe. Acdeagus (fig. 52) weakly S-eurved, strongly swollen in proximal half and eurving down towards apex. Acdeagus strongly widening near base, forming 2 , somewhat lobate, basolateral protuberances llanking a large hollow at the fold between aedeagus and its basal plate. These protuberances continue into short lateral crests along proximal part of acdeagus. Acdeagus with very slender, almost membranous, laminiform ventrolateral erests, just medially of these lateral erests, which curve into the ventral hollow between the basolateral protuberanecs. Acdcagal pore almost round, weakly incised ventrally.

Measurements (mean \pm sd): Body Iength ó: $20.6-25.2 \mathrm{~mm}(\bar{x} 23.4 \mathrm{~mm} \pm 1.3)$, $\mathrm{p}: 23.4$ and 26.2 mm ; tegmen length $0^{\circ}: 31.0-34.6 \mathrm{~mm}$ ($\overline{\mathrm{x}} 33.5$ $\mathrm{mm} \pm 1.1$) $, \underline{Q}: 35.1$ and 35.3 mm ; head length σ : $2.4-3.1 \mathrm{~mm}(\bar{x} 2.6 \mathrm{~mm}), ~ ¢: 2.5$ and 2.6 mm ; pronotum length ơ: 2.9-3.6 mm ($\overline{\mathrm{x}} 3.3 \mathrm{~mm}$). $9: 3.4$ and 3.7 mm ; mesonotum length ${ }^{3}: 6.0-7.8 \mathrm{~mm}(\overline{\mathrm{x}} 7.0$ mm), $\rho: 6.8$ and 8.0 mm ; head width o6: 6.7-7.7 $\mathrm{mm}(\overline{\mathrm{x}} 7.5 \mathrm{~mm}), \circ: 8.0$ and 8.1 mm ; width of pronotal collar of: $7.6-8.8 \mathrm{~mm}(8.5 \mathrm{~mm})$, $\stackrel{9}{ }: 8.8$ and 9.2 mm .

Distrihution. Endemic to the south-castern corner ol the Cape York Peninsula, north-eastern Qld. Moulds (1990) recorded the species from Mt Hartley approximately 30 km south of Cooktown to the Kirrama Range north-west of Cardwell.
Remarks. The species ean be recognized by slightly bronzed tegmina with 9 apical areas. Males are eharacterised by short lobate claspers and lemales are easily recognized by the sharp, thom-shaped, protuberance at the ventral margins ol the pygofer (fig. 47). The local name of this species is Frog Cicada (Moulds, 1990).

Cystosoma and Cystopsaltria

Description. Body reddish brown, without any distinct colour markings. Surlace of head and pronotum roughly wrinkled and pitted. Head and pronotum conically shaped; anterior margins of postelypeus and vertex lobes forming an almost continuous straight line with lateral margin of pronotum, though interrupted by eyes. Females smaller than males. Abdomen of males strongly inllated, being 1.3-2.0 \times head and tho-
rax, in females $0.9-1.1 \times$. Male tegmen in Cystosoma $0.8-1,1 \times$, in Cystopsaltria $1.4 \times$ body length, in females 1.2-1.4 \times. Head (fig. 69) narrower than anterior part of pronotum, with long and angularly protruding postclypeus. Head 1.9-2.3 \times as broad as long. Postclypcus distinetly protruding, its sharply edged anterior margin forming a right angle at apcx. P'ostclypeus 1.6-2.1 \times as broad as long, distinctly swollen ventrally (fig. 70), its anterior margin (lateral view) convex or forming an obtuse angle at hall' length. Lateral sides of postelypeus sometimes slightly bulbous, with about 9-12 weak furrows and a weakly inflated crest along lorum. Vertex wrinkled, with distinet medial fissure, but without diverging fissures between occlli. Central part of vertex only slightly elevated, olten even somewhat pressed down and coneave. Vertex in Cystopsaltria narrower than in Cystosoma. Vertex 1.6-2.1 \times as broad as long. Distanee between eyes 0.9-1.1 \times length of head and 1.1-1.4 \times postelypeus width. Ocelli wide apart in Cystosoma, more closely together in Cystopsaltria. Distance between lateral ocelli $0.8-1.1 \times$ distanee between lateral oeellus and cye, and, in Cystosoma 2.4-3.7 \times, in Cystopsaltria 1.9-2.2 \times width of frontal ocellus. Pronotum with grooved and pitted surface and distinet medial furrow. Amplified lateral eorners of pronotal collar lorming an inllated crest along anterior margin, which is eontinuous with the sharply edged anterolateral margin of pronotum. Mesonotum with a more smooth surface and with very narrow cruciform elevation, narrower than long across its eentre. Fore femur (fig. 60) with row of 3 spines, diminishing in length towards tibia, most proximal spine strongly bent and adjacent to femur, reaching to about half-way the distanee to middle spine (see arrow). Tegmina green, opaque rusty brown or greenish tinged in museum material, fairly slender and pointed at apex. Venation reticulate in distal half of tegmen. This reticulation includes ulnar areas in Cystopsaltria, but Cystosoma has normatly developed ulnar areas. Costal area and border along hind margin of tegmen very narrow. Wings hyaline, in Cystosoma with $7-10$, in Cystopsaltia with 12-14 apical areas, often somewhat retieulate near wing apex and with fairly broad hyaline border along hind margin. Tymbal with 6-10 transverse sclerotized ridges from dorsal to ventral margin. Malc opereulum fairly small. Basal part of operculum hardly vaulted, but in males forming a large, often globularly swollen, protuberance at distolateral corner. Distal part of male operculum angularly
oblong, curved to close against the body and covering most of tymbal cavity in ventral view. Opercula widely separated medially, by broad and rounded first sternite. Meracanthus short, not reaching distal margin of operculum. Female operculum shorter than that of male, with a more elongate lateral crest of basal part. Malc abdomen very delicatc and strongly inflated, without distinct folds between tergites and sternites; almost circular in cross section. First tergite in malc fairly long, not hidden under metanotum. Proximal margin of second tergite convex medially and almost straight between auditory capsules and sternite 2 in Cystosoma (fig. 68), though weakly curved in Cystopsaltria (fig. 82) and forming a fairly distinct ridge along tymbal cavity. Lateral parts of 2nd tergite weakly swollen at anterior margins and adjacent to tymbals. Sternites 1 and 2 adjacent. Auditory capsules in males weakly developcd, hardly protruding, but distinctly elevated relative to connecting bar between tymbal and abdomen. Femalc abdomen more robust than that of male, but much smaller with short and broad genital segment. Ovipositor sheaths not reaching to apex of bluntly rounded caudodorsal beak (fig. 63). Male pygofer globularly rounded, with short caudodorsal beak. Beak not curved over basal part of claspers or anal valves. Lateral lobes of pygofer curved inwards and forming bluntly rounded lateral protuberances. Claspers broad at base and hook-shaped; sharply curving down at half-length. Apical part of clasper with large, sharply edged, clasper hollow. Claspers weakly diverging towards rounded apices. Basal parts of claspers forming a continuous but very low ringshaped collar around base of anal valves. Aedeagus weakly S-curved. Aedeagal pore round.

Tribal placement. Distant (1905) included Cystosoma in his division Hemidictyaria (presently tribe Hemidictyini) which has as its principal character a narrow head. This division also contained Hemidictya Burmeister, 1835, Hovana Distant, 1905 and scven genera that were later brought into the tribe Prasiini (e.g., Arfaka Distant, 1905; Iruana Distant, 1905; Jacatra Distant, 1905; Lacetas Karsch, 1890; Lembeja Distant, 1905; Prasia Stảl, 1863 and Sapantanga Distant, 1905). Recently Moulds (1990) transferred Cystopsaltria from Chlorocystini to Hemidictyini based on the narrow head, inflated male abdomen and reticulate tegmina, characters very similar to Cystosoma.

A study of male genitalia, however, shows that Cystosoma and Cystopsaltria should be attri-
buted to Chlorocystini (sensu stricto). Cystosoma and Cystopsaltria have a weakly S- curved acdeagus with winged lateral crests, the synapomorphy of that tribe. The shapes of pygofer and claspers also agree with such an allocation. Furthermore, for the discriminating characters used by Moulds, the inflated male abdomen of Cystosoma and Cystopsaltria is larger but otherwise very similar to that of most species of Chlorocystini and different from that of Hemidictya, and the head of Cystosoma and Cystopsaltria is not as notably different as that of several other genera of Chlorocystini.

Hemidictya frondosa Burmcister, 1835 and Hovana distanti (Brancsik, 1893), the two remaining species of the Hemidictyini, are undoubtedly closely related and probably sister species, interesting from a biogeographical point of view, since the former comes from Brazil and the latter from Madagascar. These two are characterised by (1) very broad, opaque yellowgreen and apically pointed tegmina with reticulate venation in the distal halves, (2) a costa strongly widened and flattened in its proximal half, (3) a distally clongate and sharply pointed mesonotum reaching to the 2 nd abdominal segment, and (4) a strongly streamlined head and pronotum, with anterior margins of postclypcus and vertex lobes forming a nearly straight and almost continuous line with margins of the cyes and lateral edges of pronotum. The last character is also found in the African genus Lacetas indicating that Lacetas should possibly be included in Hemidictyini.

Cystosoma and Cystopsaltria share opaque apically pointed and reticulate tegmina and a sharp lateral edge of the pronotum with Hemidictya and Hovana. Whether reticulate tegmen venation can be regarded synapomorphic is difficult to decide since its extent varies between the four genera. However, in general aspect the tegmina of Hemidictya and Hovana are very different from those of Cystosoma and Cystopsaltria. Tegmina of the former two are broader, more squarish and have a widened costa, whilc the veins CuA and M fuse well before reaching the basal area.

The sharp latcral edge of pronotum is definitely different, sharper, in Hemidictya and Hovana. Head and pronotum of these two species are more strongly streamlined than in Cystosoma and Cystopsaltria; even the eyes are flattencd and contribute to this streamline. A lateral pronotum edge similar as in Cystosoma and Cystopsaltria was found in several other species of Chlorocystini (c.g., Mirabilopsaltria
viridicata (Distant, 1897), M. humilis (Blöte, 1960). Gymnotympana montana De Boer, 1995. G. olivacea Distant, 1905 and G. verlaaili De Boer, 1995; sce De Boer, 1995a; De Boer, 1995b, 1996).

Study of male genitalia of Memidicya frondova (unpublished) does not suggest relationship to Chlorocystini sinee there are considerable differences in shapes of pygofer, clasper and aedeagus between species of that tribe.

Monophyly. Cystosoma and Cystopsaltria are easily recognized by the following synapomorphies: apically pointed tegmina and venation reticulate in the distal halves of tegmina (1 and 2 in fig. 56). The hyaline wings too, tend to be somewhat reticulate towards their apices and have more than 6 apical areas. The species further share: I, a very stout and angularly protruding postelypeus, in lateral view not unlike that of Thaumastopsaltria, but more strongly protruding and often with convexly swollen sides; 2. a sharp lateral edge of the pronotum in dorsal view, though interrupted by the eyes, almost continuous with the anterior margins of postelypeus and vertex lobes; and 3, a very slender cruciform clevation on the mesonotum, narrower than long across the centre. These characters also occur in Prasiini, the presumed sister group of Chlorocystini and might therefore be plesiomorphic.

Figure 56. Cladogram of the species of Crstosomu and (ystopsuttria. Numbers refer to apomorphies discussed in the text.
Phylogeny. Atthough Cystosoma schultzi and Cistopsaltria immaculata share a fairly large male opereulum, other characters indicate that Cowtosoma schultei and Cystosoma saumbersi form a monophyletic group. The Cystosoma species have. compared to Cystopsaltria, a distinctly broader pygofer opening and a similar pattern of reticulation in the tegmina more restricted to the apical parts of tegmen. Furthermore. the veins CuA and M fuse at the comer of the basal area in Cystosoma (fig. 72), a probable synapomorphy for the two species of that genus (3 in fig. 56).

Cystosoma Westwood

Cicalu Westwood. 1842; 118.
Cisherome Westwood. 1842: 118. - Goding and Frogent, 1904: 566, 595, 662. - Distant. 1906; 182. 185. - Metcalf. 1963:433-434. - Boulard. 1979: 46.

- De Jong. 1982: 182. - Duffels and Van der Laan. 1985: 315. - Moulds. 1990: 192. - De Boer, 1990. 64. - De Boer, 1992a: 164. - De Boer, 1992b: 18, 19. - De Boer, 1993a: 16-17. - De Bocr, 1993b: 142. De Boer, 1995a: 8, 12, 16. - De Boer, 1995b: 3.
Type species. Cystosoma saundersii Westwood, 1842.

Diagnosis. Head with flattened vertex and large, angularly protruding, postelypeus. Pronotum with distinet medial fissure and rough, pitted, surface. Tegmina opaque green, apically pointed. Tegmen venation reticulate, with many eross veins in apical areas, ulnar areas of normal shape. Veins CuA and M fusing at corner of basal area. Male abdomen strongly inflated.
Remarks. Cystosoma is presumed to be monophyletic, the fusion of the veins CuA and M at the corner of the basal area is the supposed apomorphy for the genus.

Cystosoma saundersii Westwood

Figures 57-68
Cicula sumndersii Westwood, 1842: 118.
Cishosoma sammkersii. - Westwood. 1842: 118. Goding and Froggatı, 1904: 566.662, 663, - Distant, 1906; 185. - Burns, 1957: 670. - Metealf, 1963: 435. - Duffels and Van der Laan, 1985: 315. - Moulds, 1990: 193-196, pl. 23 figs I, Ia-1). - De Bocr, 1995b: 5.

Cytosoma[sic] samudersii. - Musgrave, 1953:13,1 fig.

Cistosomal lanndersii [sic]. - Sehremmer, 1957: 19. Fig. 11, 46.

Material examined. Australia. Australia, Saunders. OA $^{\circ}$. a Cystomoma sammersii det. Edm. Schmidt, IZW. Brisbane, 1973, J.B. Vogel, 30, ZMA; Brisbane, Kenmore, xii.1972., J.B. Vogel, 306 , o, ZMA. Cairns, 9 km W., iiiv.1985, o, ZMA. Cunninghams Gap, $700-750 \mathrm{~m}, 20-$ 30.xi.1963. J.L. Gressitt, σ, o, BPBM. N. Holland, Koclı. of, of det. C'prosoma samndersii Westwood, ZMB. Nov. Holl.. (Koch), v. Heyden, o Cystosoma senthdersii det. R.M. de Jong, SMF. NS Wales, 1908, coll. A. Jacobi, o, SMD; Qld, E.H.F, Walter, ¢, BPBM. Richmond river, NS Wales, 1908, Coll. A. Jacobi, of. SMD. Tully, New Holland, Camille van Voixem, ó det (ystosoma saundersij Westw., KBIN. Without locality label: Coll. Camille van Voixem, ${ }^{*}$, KBIN. Jocoli del. Coll. Breddin, o. DEI; ó Cestosoma saundersio det. R.M. de Jong. SMF. Without Jabels: σ, ZMB.

Description. Body yellowish brown but green when alive, unmarked (for photograph see Moulds, 1990: plate 23 Figs I, 1a-b). Abdomen in males 1.7-2.0 \times head and thorax together, in females $0.9-1.1 \times$. Tegmina of males $0.8-1.0 \times$ body length, of lemales $1.2-1.3 \times$.
Head. Greyish brown. Medial part of vertex hardly elevated, ocelli somewhat pressed

Figures 57-68. Cystosoma saundersii Westwood, 1842: 57, pygofer in oblique view, Tully; 58, pygofer in lateral vicw, Tully: 59, male caudodorsal beak in dorsal view, Tully; 60, male fore femur in lateral view, Tully, arrow indicating strongly bent proximal spinc, 61, aedeagus in dorsal vicw, Brisbane, 62, aedeagus in lateral view, Brisbane; 63 , female genital segment in lateral view, Cunningham's Gap; 64, female caudodorsal beak in dorsal view. Cunningham‘s Gap; 65, female caudodorsal beak in dorsal view, Brisbane; 66, clasper, Tully; 67, female operculum, Brisbane; 68, male operculum, Tully.
inward. Surfaces of vertex and dorsal part of postclypeus very rough, covered with small pits, anterior parts of vertex lobes wrinkled. Vertex and postclypeus with distinct medial fissure. Vertex with semicircular furrow around frontal occllus, but without diverging fissures between ocelli. Postclypeus distinctly swollen ventrally, anterior margin (lateral view) angularly convex at about half-length. Sides of postclypeus with 11 weak furrows and a smooth and narrow, weakly inflated, crest along lorum.

Thorax, Pronotum pitted, smooth in medial furrow and with long wrinkles across collar. Mesonotum smooth and unmarked.

Tegmina and wings: Tegmina opaquc greenbrown and pointed at apcx. Basal half of tegmen, including ulnar areas, with regular venation, distal half of tegmen reticulate, with many cross veins. Veins M and CuA fused at, or very close to, corner of basal area (cf. fig. 81). Wings hyaline, with irregular venation, 7 or 8 apical arcas and 2 or 3 subapical areas. Apex of wing tending to be reticulate, with several cross vcins in 1st, 2 nd and sometimes 3 rd apical area.

Legs, Fore femur (fig. 60) with 3 spines, most proximal spine strongly bent, adjacent to femur.

Tymbals, Large, in lateral view covering more than half of body width. 5 transverse sclerotized ridges spanning the tymbal from dorsal to ventral margin and a 6 th most proximal ridge spanning about three-quarters of tymbal width. 6 distinct intercalary ridges form a lateral band across tymbal.

Opercula, Male operculum (fig. 68). Basal part of operculum with a knobby lateral protuberance at distolateral corner and weakly vaulted, lateral vaulting almost absent. Distal part of operculum rather large relative to basal part, almost as long as wide and almost completely covering tymbal cavity in ventral view. Distomedial corner of operculum extending medially beyond meracanthus. Lateral margin long, running straight to base ol protuberance at distolateral corner of basal part and convexly bent into straight and about equally long, distal margin. Distomedial corner blunt, medial margin straight and slightly directed mesiad. Meracanthus reaching to about three-quarters of operculum length. Female operculum (fig. 67) narrower and much shorter than in male. Basal part of female operculum about as long as in male, but more distinetly vaulted and with long and distinct crest along rectangular distolateral corner. Distal part very short and crect, oblong, with
almost rectangular distomedial corner and broadly rounded distolateral corner.

Abdomen. Ochraceous or green and unmarked. Male abdomen strongly, almost globularly inflated, distinctly broader than thorax and strongly convex dorsally; higher than thorax in lateral view. First tergite not extending under metanotum, more than half as long as $2 n d$ tergite middorsally. Auditory capsules weakly inflated but distinctly elevated relative to connecting bar between tymbal and abdomen. Tymbal cavity very narrow; auditory capsules fairly close together and tergite part between auditory capsule and 2 nd sternite very short. Second tergite straight between auditory capsule and 2nd sternite and forming a fairly distinct crest along tymbal cavity. Female abdomen long and slender, with conically prot ruding auditory capsules. Female pygofer (fig. 63) short and weakly swollen, in lateral view with weakly convex dorsal margin. Ovipositor sheaths not reaching to apex of caudodorsal beak. Female caudodorsal beak in dorsal view swollen triangular and pointed at apex (fig. 65) but rounded in specimen from Cunningham's Gap, southern QId (fig. 64).

Male genitalia. Pygofer in lateral view as in fig. 58. Dorsal margin weakly convex, almost straight, continuous with straight caudodorsal beak. Distal margin weakly convex, concavely bent into straight margin of beak. Lateral lobe of pygofer slightly curving inwards and forming a weakly developed, slightly swollen and rounded lateral protuberance. Ventral margin forming a broad and rounded corner just below this protuberance and angularly convex, but concave towards pygofer base. Pygofer globularly swollen; pygofer opening very broad, broadest between lateral protuberances of pygofer lobes, ventral margins of pygofer converging to a convex basal margin at base of pygofer opening; ventral part of pygofer opening broadly Ushaped (fig. 57). Caudodorsal bcak in dorsal view (fig. 59) very stout and broadly rounded at apex. Clasper (fig. 66) broad, square-shaped at base, with stout triangular, downwardly directed apical part, curving inwards distally of aedeagus and forming an angular dorsodistal corner supporting aedeagus in upright position. Claspers strongly diverging towards rounded apices. Apical part of clasper with distinct, sharply edged clasper hollow. Aedeagus (fig. 62) very stout and almost straight, slightly swollen and weakly upcurved at three-quarters of its length, but recurving towards apcx. Aedeagus with very slender lateral crests and a pair of broad and
rounded dorsal ridges (fig. 61). Aedeagal pore broad and rounded.

Measurements (mean \pm sd): Body length ơ: $42.0-51.0 \mathrm{~mm}(47.2 \mathrm{~mm} \pm 2.6)$, ㅇ: $30.0-33.8$ $\mathrm{mm}(31.3 \mathrm{~mm} \pm 1.4)$; tegmen length ơ: $40.3-$ $47.8 \mathrm{~mm}(43.9 \mathrm{~mm} \pm 2.4)$, ¢: $37.7-42.2 \mathrm{~mm}$ ($40.2 \mathrm{~mm} \pm 1.7$); head length of: $3.2-3.9 \mathrm{~mm}$ (3.5 mm), q: $3.4-3.9 \mathrm{~mm}(3.6 \mathrm{~mm})$; pronotum length ठ: $4.2-4.8 \mathrm{~mm}(4.6 \mathrm{~mm})$, ९: $4.2-4.5 \mathrm{~mm}(4.4$ mm); mesonotum length ó: $7.0-8.3 \mathrm{~mm}(7.8$ $\mathrm{mm})$, ๆ: $6.6-8.1 \mathrm{~mm}(7.4 \mathrm{~mm})$; head width o': $7.1-7.8 \mathrm{~mm}(7.5 \mathrm{~mm})$, $\stackrel{̣}{6} .6-7.8 \mathrm{~mm}(7.4 \mathrm{~mm})$; width of pronotal collar of: $10.8-11.9 \mathrm{~mm}(11.4$ mm), ¢: $9.7-11.5 \mathrm{~mm}(10.7 \mathrm{~mm})$.

Distribution. Eastern Qld and north-eastern

 NSW. Moulds (1990) recorded the species from the Atherton Tableland in northern Qld, the Clarke Range, Eungella plateau and Mackay in Central Qld, inland at Carnarvon Range and from Kroombit Tops in southern Qld to Sydney.Remarks. Cystosoma saundersii is the largest species of Chlorocystini, easily recognized by its enormously inflated abdomen, hence the local name "Bladder Cicada" (Moulds, 1990).

Cystosoma schmeltzi Distant

Figures 69-71, 73-75, 81
Cystosoma schmeltzi Distant. 1882: 32. pl, vii figs 11, 11a-b. - Goding and Froggatt, 1904: 566: 662, 664. - Distant, 1906: 185. - Burns, 1957; 670. Metcalf, 1963: 436. - Duffels and Van der Laan, 1985: 316. - Moulds, 1990: 192-193, pl. 23 figs 2. 2 a.
Material. Australia. Dama, Cape York, q, ZMB; Gayndah, Mus Godefroy No 17630, o paratype, ZIM. Wacol, 28.ii.1970, H. Sas, σ°, RMNH.
Description. Body yellow-green but green when alive and unmarked (for photographs see Moulds, 1990: pl. 23 figs 2, 2a). Male abdomen $1.4 \times$ head and thorax together, in females $0.9-$ 1.0 x . Tegmina of male $1.0 \times$ body length, of females 1.4 x .

Head (fig. 69): Ochraceous with traces of olive green, vertex lobe with blackish spot between eye and lateral ocellus. Head heavily wrinkled between occlli and on anterior parts of vertex lobes, vertex with distinct medial fissure. Postclypeus distinctly swollen ventrally, anterior margin (lateral view) angularly convex at about half-length. Lateral parts of postclypcus with 11 weak furrows and a smooth and narrow, weakly inflated, crest along lorum (fig. 70).

Thorax. Pronotum pitted as in C. saundersii,
smooth in medial furrow and with long wrinkles on collar. Mesonotum smooth and unmarked.

Tegmina and wings: Tegmina opaque greenbrown and pointed at apex. Basal half of tegmen, including ulnar areas, with regular venation, apical half reticulate, with many cross veins. Veins M and CuA fused at corner of basal area (fig. 81). Wings hyaline, with almost regular venation and 7 apical areas. A fairly narrow hyaline border along hind margin of wing, though distinctly broader than opaquc border of tegmen.

Tymbals. Large, in lateral view covering more than half of body width. 6 transverse sclerotized ridges spanning the tymbal from dorsal to ventral margin and a 7th most proximal ridge spanning about three-quarters of tymbal width. 7 distinct intercalary ridges form a lateral band across tymbal.

Opcrcula. Male operculum (fig. 71) with weakly vaulted basal part as in C. saundersii. Distal part of operculum very different from that of C. saundersii, oblong and rather large relative to basal part, completely covering tymbal cavity in ventral view and distinctly extending medially beyond meracanthus. Lateral margin long, gradually and concavely bending into crest around distolateral corner of basal part and convexly bending into long and weakly convex distal margin. Distomedial corner broadly rounded, medial margin straight. Meracanthus reaching to about two-thirds of opcrculum length. Femalc operculum as in C. saundersii with erect and oblong distal part (cf. fig. 67).

Abdomen. Male abdomen ochraceous to green and unmarked, distinctly inflated, but not as globular as in C. saundersii; with dorsal margin (lateral view) not distinctly elevated relative to dorsal margin of thorax. First tergite not hidden under metanotum and medially only slightly shorter than 2nd tergite. Auditory capsules weakly developed, hardly protruding and not visible in dorsal view, but distinctly elevated relative to connecting bar between tymbal and abdomen. Tymbal cavity very narrow; auditory capsules fairly close together and tergite part between auditory capsule and 2 nd sternite very short. Second tergite straight between auditory capsule and 2 nd sternite and forming a fairly distinct crest along tymbal cavity. Female genital segment short and weakly swollen as in C. saundersii. Ovipositor sheaths not reaching to apex of caudodorsal beak. Female caudodorsal beak in dorsal view swollen triangular and pointed at apex.

Male genitalia. Pygofer in lateral view as in fig. 73. Dorsal margin concave near base, but

Figures 69-77. Cistosoma schmeltzi Distant, 1882:69, male head in dorsal view; 70, male postclypeus in lateral view; 71, male operculum; 72, base of right tegmen, male (Cystopsaltria immaculata); 73, pygofer in lateral view; 74, male eaudodorsal beak in dorsal view; 75, pygofer in oblique view; 76, elasper; 77, aedeagus in lateral view.
strongly eonvex to apex of stout and short eaudodorsal beak. Distal margin straight, forming an obtuse angle with margin of beak, angularly bending outwards at distal end, into weakly developed, slightly swollen and rounded lateral protuberance. Ventral margin weakly convex, but forming a broad and rounded inwardly curved eorner just below this protuberance. Pygofer globularly swollen; pygofer opening very broad, broadest between lateral protuberances of pygofer lobes. Ventral margins converging to a very short and convex basal margin at base of pygofer opening; ventral part of pygofer opening U-shaped (fig. 75). Caudodorsal beak in dorsal view (fig. 74) very stout and broadly rounded at apex. Claspers (fig. 76) parallel to rounded apices, broad, square-shaped at basc, with long and slender, downwardly directed apieal part, curving inwards at angular dorsodistal corner and supporting acdeagus in upright position. Claspers fused at base to low collar around base of anal valves. Apical part of clasper with distinct but slender and sharply edged clasper hollow. Aedeagus (fig. 77) slightly upcurved, but reeurving near apex, with very slender lateral crests and pair of broad rounded dorsal ridges. Aedeagal pore broad and oval.

Measurements. Body length ơ: 27.6 mm , ㅇ: 21.0 and 23.5 mm ; tegmen length $\sigma: 28.2 \mathrm{~mm}$, $0:$ 29.0 and 32.3 mm ; head length of: $2.7 \mathrm{~mm}, \stackrel{\square}{7}: 2.7$ and 2.8 mm ; pronotum length $\sigma^{\circ}: 3.6 \mathrm{~mm}$, ¢: 2.8 and 3.0 mm ; mesonotum length $0^{3}: 6.4 \mathrm{~mm}, 9: 6.2$ and 6.3 mm ; head width: 5.4 mm , q: 5.3 and 5.5 mm ; width of pronotal collar ơ: 8.0 mm, ¢: 7.5 and 7.9 mm .

Distribution. Eastern Qld and northern NSW. Moulds (1990) recorded the species from Mossman Gorge and Forty Mile Scrub, to inland northern NSW south to Gunnedah.
Remarks. C. schmeltzi is distinctly smaller than C. saundersii and has a less strongly inflated abdomen. The local name is "Lesser Bladder Cicada" (Moulds, 1990).

Cystopsaltria Goding and Froggatt

Cystopsaltria Goding and Froggatt, 1904: 559. 566. 661. - Distant, 1906: 154, 160. - Metcalf, 1963: 260. - Duffels and Van der Laan, 1985: 250. Moulds. 1990: 196-197.-De Boer, 1992b: 18-19.De Boer, 1993a: 16-17. - De Boer, 1993b: 142. -De Boer, 1995a: 8. - De Boer, 1995b: 3.

[^0]Remarks. Cystopsaltria is a monotypic genus, elosely related to Cystosoma.

Cystopsaltria immaculata
 Goding and Froggatt

Figures 72, 78-80, 82-87
Cystopsaltria immaculata Goding and Froggatt. 1904: 566, 661. pl. xvii figs 1. 1a. - Distant. 1906: 160. - Burns, 1957: 644-645. - Metcalf, 1963: 260. - Duffels and Van der Laan, 1985, 250. - Moulds. 1990: 197-198, pl. 23 figs 3, 3a.
Material. Australia. Cairns, 9 km W., ii-iv.1985. 3op. ZMA. Kamerunga near Cairns, N. Qld., 10.i.1977. M.S. and B.J. Moulds, ó, ZMA. Mt Windsor Tableland. NW of Mossman, 30.xii.1980. M.S. and B.J. Moulds, o Cysopsaliria immaculata G. and F. det. M.S. Moulds, ZMA.

Description. Body light brown (for photographs see Moulds, 1990: pl. 23 figs 3, 3a). Male abdomen strongly inflated $1.3 \times$ head and thorax together, in females 1.0-1.1 \times. Tegmina of male $1.4 \times$ body length, in females 1.3-1.4 \times.

Head. As in Cystosoma, but with somewhat narrower vertex; occlli more closely together. Distance between lateral occlli 1.9-2.2 \times width of frontal ocellus.

Thorax: Pronotum less distinctly pitted than in Cystosoma, in male smooth, but with a distinct medial furrow.

Tcgmina and wings. Tegmina opaque grecnish brown and reticulate as in the 2 forcgoing species, but with very different pattern of veins. Distinctly more cross veins and larger part of tegmen reticulatc; no regular ulnar areas. Veins M and CuA reach basal area separately. Radial area divided by extra vein, parallel to costa and fusing with vein M near corner of basal area (fig. 72). Tegmen with distinct, almost hyaline, cordial fold. Wings hyaline, with irregular venation as in C. saundersii, but with more (12-14) apical areas. Apex of wing tending to be reticulate, with several cross veins, especially near apex of first 4 or 5 apical areas.

Tymbals. Large, covering more than half of body width in lateral view. 8 transverse sclerotized ridges spanning the tymbal from dorsal to ventral margin, a 9th ridge spanning about three-quarters of tymbal width and a 10 th most proximal ridge reaching to about half of tymbal width. 9 weak intercalary ridges form a lateral band across tymbal.

Opercula. Male operculum (fig. 82) resembling that of C. schmeltzi. Distal part of operculum oblong and rather large relative to basal part, covering greater part of tymbal cavity in ventral view and distinctly extended medially beyond meracanthus. Lateral margin long, forming an obtuse angle at about third its length,

Figures 78-87. Cystopsaltria immaculata Goding and Froggatt, 1904: 78, pygofer in oblique view; 79, pygofer in lateral view; 80, male eaudodorsal beak in dorsal view; 81 , base of right tegmen, male (Cystosoma schmeltzi); 82, male operculum; 83 , female caudodorsal beak in dorsal view, Cairns; 84 , clasper; 85 , aedeagus in lateral view; 86 , aedeagus in oblique view; 87, female operculum, Cairns.
angularly bending into crest around distolateral corner of basal part and angularly bending into long and weakly convex distal margin. Distomcdial corner angularly rounded, medial margin weakly convex. Meracanthus reaching to about $3 / 4$ of operculum length. Female operculum (fig. 87) much shorter than that of male. Distal part sickle-shaped, with angularly convex distal margin.

Abdomen. Ochraceous brown and unmarked. Male abdomen distinctly inflated, with its dorsal margin (lateral view) higher than dorsal margin of thorax. First tergite fairly short, middorsally less than quarter as long as 2 nd tergite. Auditory capsules weakly developed, hardly protruding and not visible in dorsal view. Tymbal cavity much wider than in Cystosoma; tergite part between auditory capsule and 2nd sternite much longer than in that genus. Second tergite straight between auditory capsule and 2 nd sternite and forming a distinct crest along tymbal cavity. Female abdomen as in C. saundersii. Ovipositor sheaths not reaching to apex of caudodorsal beak. Female caudodorsal beak in dorsal view (fig. 83) stout, bluntly rounded at apex.

Male genitalia: Pygofer in lateral view as in fig. 79. Dorsal margin almost straight and continuous with short caudodorsal beak. Distal margin straight, concavely bent into margin of beak, angularly bending outwards at distal end, into distinct and angularly swollen lateral protuberance. Ventral margin straight and forming a very small corner just below this protuberance. Pygofer opening much narrower than in Cystosoma. Ventral margins converging to a sharp angle at base of pygofer opening; ventral part of pygofer opening V-shaped (fig. 78). Caudodorsal beak in dorsal view (fig. 80) very stout and short, broadly rounded at apex. Claspers (fig. 84) almost parallel to sharply pointed apices. Clasper broad, square-shaped at base, with long and very slender, downwardly directed apical part, curving inwards at angular dorsodistal corner, supporting aedeagus in upright position. Claspers fused at base to a low collar around base of anal valves. Apical part of clasper with distinct but slender and sharply cdged clasper hollow. Aedeagus (figs 85, 86) very stout, swollen and slightly upcurved in proximal half, but more slender in distal half and recurving near apex. Aedeagus without distinct lateral crests, but with a pair of broad rounded dorsal ridges, cnding in weakly outcurving subapical appendages. Aedeagal apex incised.

Mcasurements (mean \pm sd): Body length ơ: 35.0 mm , ¢: $31.5-35.1 \mathrm{~mm}(33.7 \mathrm{~mm} \pm 1.4)$;
tegmen length of: 40.0 mm , o: $42.3-46.6 \mathrm{~mm}$ ($45.1 \mathrm{~mm} \pm 1.7$); head length of: 3.4 mm, o. $3.2-$ 3.9 mm (3.7 mm); pronotum length $\sigma^{\circ}: 4.6 \mathrm{~mm}$, ¢: $4.6-5.0 \mathrm{~mm}(4.8 \mathrm{~mm})$; mesonotum Iength ơ: 7.9 mm, ¢: $7.6-8.5 \mathrm{~mm}(8.2 \mathrm{~mm})$; head width ơ: 7.4 mm , я: $7.4-7.8 \mathrm{~mm}(7.6 \mathrm{~mm})$; width of pronotal collar $\sigma: 10.6 \mathrm{~mm}$, $\%: 10.4-11.5 \mathrm{~mm}$ (11.1 mm).
Distribution. North-eastern Qld. Moulds (1990) recorded the species from Gap Creek south of Cooktown to Paluma.
Remarks. C. immaculata is in size intermediatc betwcen Cystosoma schmeltzi and C. saundersii. The species is casily recognized by the reticulate vein pattern of tegmina, cxtending over a larger part of the tegmen than in Cystosoma. Males can be rccognized by their aedeagus with distinct dorsal appendages. The local name is "Rare Bladder Cicada" (Moulds, 1990).

Acknowledgements

For the loan of material I am indebted to: Dr W.J. Knight and Mr M.D. Webb (BMNH); Mr G.M. Nishida and Mr K. Arakaki (BPBM); Dr B.P. Moore (CSIRO); Dr H. Gädike (DEI); DrE. Kierich (IZW); Mr J. van Stalle (KBIN); Mr J. van Tol (RMNH); Dr V.P. Gapud (SEM); Dr R. Emmrich (SMD); Dr H. Schröder (SMF); Mr F. Heller (SMN); Dr H. Strümpel (ZIM); Dr U. Göllner-Scheiding and Dr J. Deckert (ZMB); Dr A. Jansson (ZMH). Mr M.S. Moulds is thanked for his help and cooperation and the loan of specimens from his private collection, he kindly donated some specimens of C. immaculata to our museum.

I would like to thank Mr G. Verlaan for technical assistance. I am indebted to Dr J.P. Duffels and Prof. Dr F.R. Schram (Instituut voor Systematiek en Populatic Biologie, Amsterdam) for their critical reading and comments on the manuscript.

References

Ashton, H., 1912. Some new Australian Cicadidac. Proceedings of the Royal Society of Itctoria (n.s.) 24: 221-229, pls xlix-li.
Ashton, H., 1914. Catalogue of the Cicadidae in the South Australian Museum, with descriptions of several new species. Transactions of the Royal Society of South Australia 38: 345-358. pl. xvii.
Boer, A.J. de, 1990. Aedeastria, a new cicada genus from New Guinea, its phylogeny and biogcography (Homoptera, Tibicinidae), preceded by a discussion on the taxonomy of New Guincan Tibicinidae. Beaufortia 40 (3): 63-72.

Boer, A.J. de. 1991. Scohtotymana, a new cicad genus lrom New Guinea, with the deseription of three new species, their taxonomy and biogeography (Homoptera, Tibicinidac). Beaufortia 42 (1): 111.

Boer. A.J. de, 1992a. The taxonomy and biogeography of the liridis group of the genus Bacturia Stål. 1866 (Homoptera, Tibicinidae). Bijdragen tot de Dieckumick 61 (3): 163-183.
Boer. A.J. de, 1992b. The taxonomy and biogeography of the genus Thanmastopsahria Kirkaldy, 1900 , (Homoptera, Tibicinidac). Beanfortia 43 (3): 1744.

Boer. A.J. de, 1993a. Gnincapsahria, a new genus ol the Australian-New Guincan region (Homoptera, Tibicinidac), with notes on its taxonomy and biogeography. Bijdragen tot de Dierkunde 63 (1): 1541.

Boer, A.J. de, 1993b. Ten species added to the genus Acdeastria De Boer. 1990, with the deseription of eight new species and notes on the taxonomy and biogeography (Homoptera, Tibicinidac). Beanforfia 43 (9): 140-167.
Boer, A.J. de. 1994a. The taxonomy and biogeography ol the loriae group of the genus Bacturia Stăl, 1866 (Homoptera, Tibicinidac). Tijdschrifi roor Enhomologie 137: 1-26.
Boer, A.J. de, 1994b. The taxonomy and biogeography of the exhansta group of the genus Bachuria Stål, 1866 (Homoptera, Tibicinidac). Beaufortia 44 (5): 127-158.

Boer, A.J. de, 1994 e . The taxonomy and biogeography of the guttulinervis group of the genus Bacturia Stăl. 1866 (Homoptera. Tibicinidae). Bijdragen tot de Dierktude 64 (2): 87-100.
Boer, A.l. de. 1995a. The taxonomy, phylogeny and biogeography of the eicada genus Gymnorympana Stăl, 1861, (Homoptera, Tibicinidac). Invertchrate Tavonomy' 9 (1): 1-81.
Boer. A.J. de, 1995b. The taxonomy and biogeography of the eieada genus Papuapsalria gen. n. (Homoptera, Tibicinidae). Tifdsc/mifi roor Entomologie 138: 1-44.
Bocr. A.J. de. 1995 e . Islands and cieadas adrift in the West-l'acific: biogeographic patterns related to plate tectonics. Tijdschrili roor Ennomologie 138: 169-244.
Boer, A.J. de. 1995 d . The phylogeny and taxonomic status of the Chlorocystini (Homoptera, Tibicinidae). Bijdragen rot de Dierkunde 65: 201-231.
Boer. A.J. de, 1996. Mirabilopsaliria a new cicada genus from New Guinea. its taxonomy and biogeography. (Homoptera, Tibicinidae). Tiopical Zoology 9: 349-379.
Boutard, M., 1979. Révision de la faune cicadéenne des lles Maurice et Rodrigues. Bulletin de $k a$ Sociate Entomologicue de F'rance 84: 27-47.
Burns, A.N. 1957. Check list of Australian Cicadidac. Entomologische Arheite"l and dem Museum Georg Frer 8 (2): 609-678.
Daly, M.C.. Cooper, M.A. Wilson, 1., Smith, D.G. and Hooper. B.G.D., 1991. Cenozoic plate tectonies
and basin evolution in Indonesia. Marine and Petrolerim Gcology (MPGD) 8 (1): 1-21.
Distant, W.L., 1882. On some undescribed Cicadidac from Australia and the Pacific Region Proceedings of the Zoological Society of London 1881: 125-134, pl. 7 ligs 7-14.
Distant, W.L., 1905. Rhynchotal notes. - XXXIV. Ammals and Magazine of Natmal History (7) 16: 203-216.
Distant. W.L., 1906. A synonymic eatalogue of Homoptra. Part I. Cicadidae. Trustees British Muscum: London.
Distant, W.L.. 1907. Rhynchotal notes.- XLIII. Anmals and Magazine of Natural IIstory (7) 20: 411423
Duffels, J.P., 1977. A revision of the genus Diceropyga Stål, 1870 (Homoptera, Cicadidae). Monografieën van de nederlandse entomologische Vereniging 8: 1-227.
Duffels. J.P., 1986. Biogeography ol Indopacific Cicadoidca, a tentative recognition of areas of endemism. Cladistics 2 (4): 318-336.
Duffels, J.P. and Boer, A.J. de, 1990. Areas of endemism and composite areas in East Malcsia. Pp. 249-272 in: Baas. P., Kalkman, C. and Geesink, R. (eds). The plant diversity of East Makesia: Proceedings of the Flora Malesiana symposinn commemorating Professor Dr: C.G.G.J. van Steenis, Leiden. August 1989. Kluwer Academic Publishers: Dordrecht.
Duffels, J.P. and van der Laan, P.A., 1985. Catalogue of the Cicadoidea (Homoptera, Auchenorhynga) 1956-1980. Series Emomologiea 34: i-xvi, 1414.

Froggatt, W.W., 1907. Sub-order ii.- Homoptera Ausralian insects. William Brooks and Co.:Sydney. xiv +449 pp.; pls 1-37.
Goding. F.W. and Froggatt, W.W., 1904. Monograph of the Australian Cicadidac. Procecdings of the Limmean Socieqy of NSU' 29 (3): 561-670; pls 1819.

Hamilton, W.B., 1979. Tectonics of the Indonesian region. United States Geological Surey Profesional Papers 1078: i-ix, 1-345.
Holloway, J.D., 1979. A survey of the Lepidoptera, biogeography and ecology of New Caledonia. Series Entomologica 15: i-xii, 1-588.
Holloway, J.D., 1984. Lepidoptera and the Melanesian Ares. Pp. 129-169 in: Radovsky, F.J., Raven, P.H. and Sohmer, S.H. (eds), Biogeography of the tropical Pacific, proceedings of a symposinm. Association of Systematies Collection: Lawrence.
Jong, M.R. de. 1982. The Australian species of the genus Lemheja Distant 1892 (Homoptera, Tibicinidac). Bijdragen tot de Dierkunde 52 (2): 175185.

Jong, M.R. de, 1985. Taxonomy and biogeography of Oriental Prasiini 1: The genus Prasia Sal, 1863 (Homoptera, Tibicinidac). Tijdsc/rifi voor Entomologie 128: 165-191.

Kato, M., 1932. Monograph of Cicadidac. 450 pp. 32 pls.
Kato, M.,1956. The biology of cicadas - Bulletin Cicadidac Milssellm. Iwasaki Shoten, Jinbocho Kanda: Tokyo. 319 pp., 46 pls.
Kirkaldy, G.W., 1907. Some annotations to M. Distant's recent Catalogue of the Cicadidae. (Hem.). Annales de la Socićté entomologique de Belgique 51: 303-309.
Mctcalf, Z.P.,1963. General catalogue of the IIomoptera, VIII. Part 2. Tibicinidae. North Carolina State College: Raleigh. iv +492 pp .
Moulds, M.S., 1990. Australian cicadas. NSW University Press: Kensington. 217 pp.
Musgrave, A., 1953. Seasonal occurrence of cicadas. Australian Muserum Magazine 11: 10-15.
Pigram, C. J. and Davies, P.J., 1987. Terranes and the accretion history of the New Guinea orogen. Journal of Australian Geology and Geophysics 10: 193-212.
Rangin, G., Jolivet, L. and Pubellier, M.,1990a. A simple model for the tectonic evolution of the southeast Asia and Indonesia region for the past 43 m.y. Bulletin de la Société géologique de France (8) 6 (6): 889-905.

Rangin, G., Pubellier, M., Azema, J., Briais, A., Chotin, P., Fontaine, H., Huchon, P., Jolivet, L., Maury, R., Muller, C., Rampnoux, J.-P., Stephan, J.-F., Tournon, J., Cottereau, N., Dercourt, J. and Ricou, L.E., 1990b. The quest for Tethys in the western Pacific. 8 paleogeodynamic maps for

Cenozoic time. Bulletin de la Société géologique de France (8) 6 (6): 907-913.
Schremmer, F., 1957.Singzikaden Neue Brehmbiicherei 193. A. Zicmsen Verlag: WittenbergLutherstadt. 47 pp .
Stål, C., 1863. Hemipterorum exoticorum generum et specierum nonnullarum novarum descriptiones. Transactions of the Royal Entomological Society of London (3) I: 571-603.
Swofford, D.L., 1993. PAUP: Phylogenetic Analysis Using Parsimony, version 3.I.I. Illinois Natural History Survey: Champaign.
Walker, F., 1852. Supplement. List of the specimens of Homopterous insects in the collection of the British Museum 4: 1119-1188[1119-1168], 8 pls. British Museum: London.
Walker, F., 1862. Characters of undescribed species of Homoptera in the collection of F.P. Pasco, F.L.S. Journal of Entomology 1 (5): 303-319, pl. 15.
Westwood, 1842. Illustrations of some genera belonging to the family Cicadidae. Vol. I (6), pp. 81-96, pls xxi-xxiv in: Westwood, J.O., Arcana entomologica: or illustrations of new, rave and interesting exotic insects: Will. Smith: London.
Westwood, J.O., 1851. Descriptions of some new species of exotic homopterous insects. Vol. I, Appendix D, pp.432-434, pl. 4 in: Eyrc, E.J., Journals of expeditions of discovery into Central Australia and overland from Adelaide to King George's Sound. Boone: London.

[^0]: Type species. Cystopsaltria immaculata Goding and Froggatt, 1904.

